Load Paths
Load Diagrams
Floor Systems

Gatti Wool Mill, Rome (Pier Luigi Nervi, 1951)

Load Combinations

Load Types

- Dead Load - D
- Roof Live Load - Lr
- Floor Live Load - L
- Snow Load - S
- Wind Load - W
- Earthquake - E

Load Combinations

Allowable Stress Design (ASD)

- D
- D+L
- D + (Lr or S)
- D +0.75 L + 0.75 (Lr or S)
- D + (W or 0.7 E)

Strength Design (LRFD)

- 1.4 D
- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.8 W$)$
- 1.2 D + $1.6 \mathrm{~W}+\mathrm{L}+0.5$ (Lr or S)
- 1.2 D + 1.6E + L + 0.2S

Gravity loads trace from top down to their resolution at the foundation.

Load Paths

Roof Loads

Roof loads can be applied as projected loads (e.g. snow or live loads)
or loads on the surface (e.g. dead or wind)

Load Paths

Floor Loads

Member Hierarchy

Flooring spans between joists
Joists span between beams
Beams span between girders
Girders span between columns

Columns carry load to ground

Load Paths

Floor Slabs

Concrete slabs span in the direction of the steel reinforcement.

One-way slabs should span the shortest direction.

Two way slabs span in both directions. Aspect ratios should be square or less than 2:1. The load path divides at 45° from corner.

2-way slab tributary area of beam B

Load Paths

Ideal load paths following the isoclines of maximum tension and compression (principal stress patterns). These give the design with least material, but more complex form.

Cassa di Risparmio, Venice
by Pier Luigi Nervi

Tributary Area

The tributary area is an area used to determine the load on a member.

If geometry and loading is symmetric, then load paths and reactions are also symmetric.

The tributary area is an area used to determine the load on a member.

Each member has a tributary area that can be used to find the total load on that member.

Load Transfer

example 1

Construct the load diagram and find end reactions for Beam B-1 and Girder G-1

For Load on B1:

Floor Dead Load = 4" slab + W8x31 beam

DL slab = 150 PCF $\times(4 / 12)$ FT $=50$ PSF 50 PSF x (2.5' + 2.5')SF/LF = $\mathbf{2 5 0}$ PLF

DL beam W8x31 (selfweight) = 31 PLF

TOTAL DL = 250+31 = $\underline{\mathbf{2 8 1}}$ PLF

Load Transfer example 1

Construct load diagram and find end reactions for beam B-1

B-1

$$
\begin{aligned}
& W=w l=481 \text { PLF } \times 24^{\prime}=11544 \mathrm{LBS} \\
& R_{1}=R_{2}=5772 \mathrm{LBS} \text { (BY SYMMETRY) }
\end{aligned}
$$

Load Transfer example 1

$$
G_{i}-1
$$

Construct load diagram and find end reactions for girder G-1
W14x22

BEAM PL $=22$ RIF $\times 20^{\prime}=440$ LES
$P=5772 \times 2$ (from each side) $=11544$ LBS
TOTAL LOAD $=3 \times 11544+440=35072$ LBS $R_{1}=R_{2}=35072 / 2=17536$ LBS

Floor System

example 2

Find Load Diagrams for: B1
B2
G1

Dead Load

wall 800 PLF
floor slab 70 PSF
Live Load
floor 90 PSF

Notice the order:
B 1 , then B 2 , then G 1
Concrete slab floor system spanning in directions shown

Floor System example 2 cont.
Find a beam not loaded by other beams, e.g. a joist or a simple beam.

Sketch the tributary area $-1 / 2$ span to the next member.

Sketch a load diagram
Calculate the distributed loads in PLF
(total DL+LL on floor = 160 PSF) 70 PSF + 90 PSF = 160 PSF

Floor:
160 PSF x 5 FT $=800$ PLF
Wall:

Load diagram

Floor System example 2 cont.
From the PLF loading, calculate a total W load.
Locate W at the centroid of the distributed loading.
Solve the end reactions by summing moments about reactions or by proportions.

$$
w \times L=W
$$

Floor:
800 PLF x $20 \mathrm{FT}=16000$ LBS

Wall:

$$
800 \text { PLF x } 20 \text { FT }=16000 \text { LBS }
$$

Load diagram

Floor System example 2 cont.
Continue with the next beam supporting a previously solved beam.
Sketch the tributary areas - 2-way slabs divide at 45° from each corner. Areas associated with reactions of other beams are proportional to the load distribution.
Sketch a load diagram
Calculate the distributed loads in PLF, finding peak values of varying loads.

reaction from B1 $=16000$ LBS
wall: DL $=800$ PLF
floor: total DL+LL = 160 psf
2-way Slab (Peak Load)
160 PSF x 10 FT = 1600 PLF

Load diagram

Floor System example 2 cont.

From the PLF loading, calculate a total W load.
Locate W at the centroid of the distributed loading.
Solve the end reactions by summing moments or by proportions.

Reaction from B1:
$R=16000$ LBS

Wall:

$$
800 \text { PLF x } 10 \text { FT = } 8000 \text { LBS }
$$

Floor:
1600 PLF x $10 \mathrm{FT}=16000$ LBS

Load diagram

Floor System example 2 cont.
Continue with the next beam supporting a previously solved beam.
Sketch the tributary areas - 2-way slabs divide at 45° from each corner. Areas associated with reactions of other beams are proportional to the load distribution.
Sketch a load diagram
Calculate the distributed loads in PLF, finding peak values of varying loads.

Peak Load on 2-way Slab:
160 PSF x 10 FT = 1600 PLF

Floor on one side of G1:

Load diagram

Floor System example 2 cont.
From the PLF loading, calculate a total W load.
Locate W at the centroid of the distributed loading.
Solve the end reactions by summing moments or by proportions.

Floor on G1:
800 PLF x $20 \mathrm{FT}=16000$ LBS 800 PLF x 40 FT $=32000$ LBS

2-way Slab:
1600 PLF x 10 FT = 16000 LBS

Load diagram

