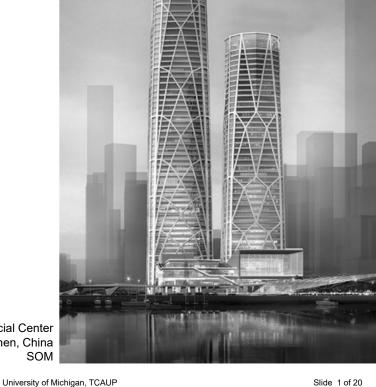
Lateral Stability


Lateral Loads

Frame Bracing

Shearwalls

Diaphragms

Bracing Configurations

CITIC Financial Center Shenzhen, China SOM

Peter von Buelow

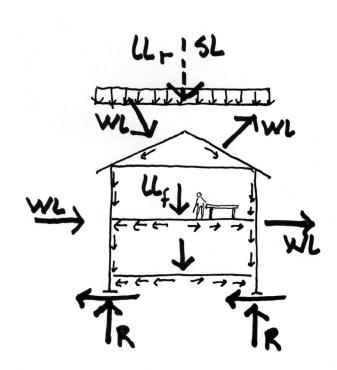
Slide 1 of 20

Load Combinations

Load Types

- · Dead Load D
- Roof Live Load Lr
- · Floor Live Load L
- · Snow Load S
- · Wind Load W
- Earthquake E

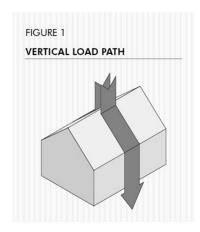
Allowable Stress Design (ASD)


Not factored

- D
- D+L
- D + (Lr or S)
- D + 0.75 L + 0.75 (Lr or S)
- D + (0.6W)
- D + 0.75L + 0.75(0.6W) + 0.75(Lr or S)
- D + 0.7Ev + 0.7Eh

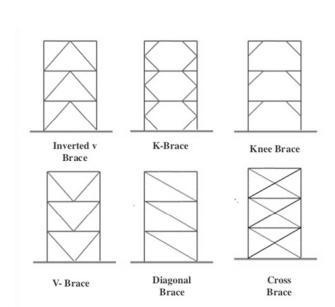
Strength Design (LRFD)

With gamma (γ) safety factors


- 1.4 D
- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.5W)
- 1.2 D + 1.0W + L + 0.5(Lr or S)
- 0.9D + 1.0W
- 1.2D + Ev + Eh + L + 0.2S
- 0.9D Ev + Eh

Load Paths

Vertical Loads gravity D, L, Lr, S,


Lateral Loads wind seismic

Peter von Buelow University of Michigan, TCAUP Slide 3 of 20

Frame Bracing

John Hancock Tower, Chicago SOM, 1968 Engineer: Fazlur Khan

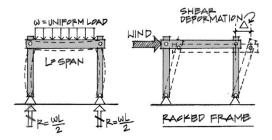
Lateral Frame Bracing

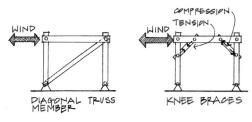
Lateral Bracing tension and compression (Michigan North Quad)

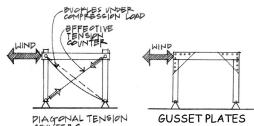
Diagonal Tension Counters (X-Bracing) (Buck Steel Buildings)

University of Michigan, TCAUP Structures I Slide 5 of 20

Lateral Stability

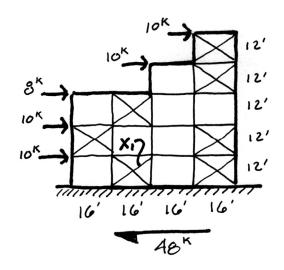

A system needs to be stable in all directions -x,y, and z.


Dead , Live and Snow Loads are vertical due to gravity.


Wind and Seismic Loads are primarily horizontal or lateral.

Lateral bracing can be achieved with:

- Diagonal truss member
- X-bracing members
- Knee bracing
- · Gusset plates

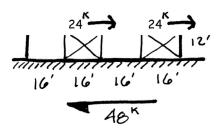

Example Frame Bracing

- Check for stability. At least one ridged frame per story
- Convert distributed loads to point loads acting at floors.
- Solve the horizontal reaction for the whole system.
- Assume the bracing carries tension only

$$\sum_{H} F_{H} = 0$$

$$0 = 10 + 10 + 8 + 10 + 10 - R$$

$$R = 48^{k}$$



Base shear = 48k

University of Michigan, TCAUP Structures I Slide 7 of 20

Example Frame Bracing cont.

- Cut a FBD horizontally through the story containing the brace being solved.
- Sum horizontal forces to find the horizontal component in the braces.
 Assume load is divided evenly among braces in a story.
- In this case only the tension bracing carries load (rods or cables)
- Find the vertical component by proportions or trig function

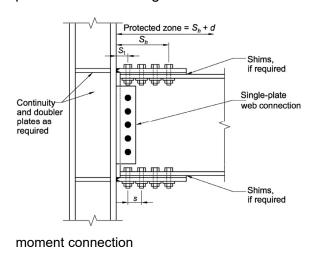
$$\sum F_{H} = 0$$

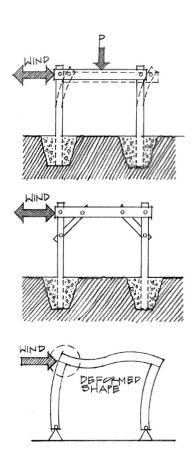
$$0 = -48 + H_{1} + H_{2}$$

$$H_{1} = H_{2} = 24^{K}$$

$$\frac{12}{16} : \frac{V}{24}$$

$$V = 18$$

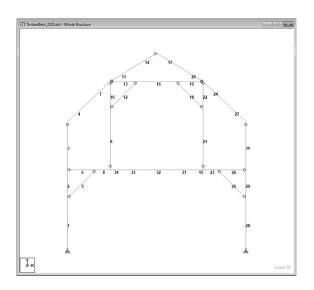

$$X_1 = \sqrt{18^2 + 24^2} = 30^K$$


Lateral Stability

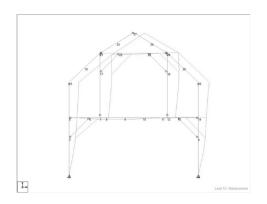
A system needs to be stable in all directions -x,y, and z.

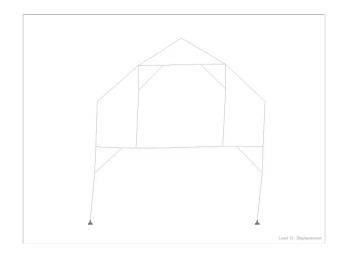
Fixed (moment) connections in a rigid frame can also provide stability.

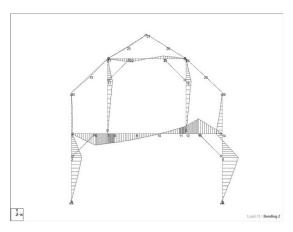
In a fixed frame the members act in both compression and bending.

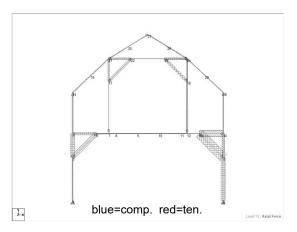


University of Michigan, TCAUP Structures I Slide 9 of 20

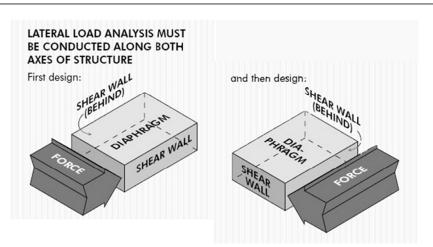

Timber Frame Bracing

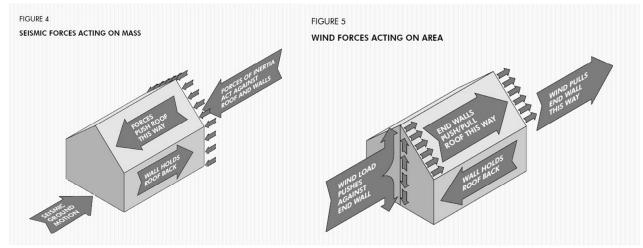

John Pariseau's Timber Frame Load Case: D + 0.6W





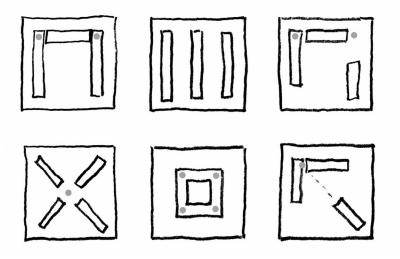
Timber Frame Bracing John Pariseau's Timber Frame





University of Michigan, TCAUP Structures I Slide 11 of 20

Diaphragms and Shear Walls



Lateral Force Resistance

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab

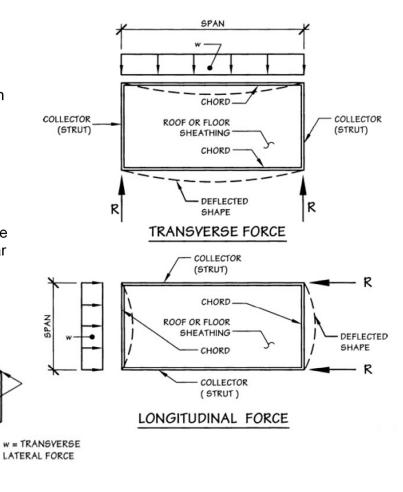
University of Michigan, TCAUP

Structures II

Slide 13 of 20

Definitions

Diaphragm – a flat structure which acts as a deep beam to resist in plane loads.


Shear Wall – a vertical structure which acts as a cantilevered diaphragm

Chord – the edge member of a diaphragm

DEFLECTED SHAPE-

OF DIAPHRAGM

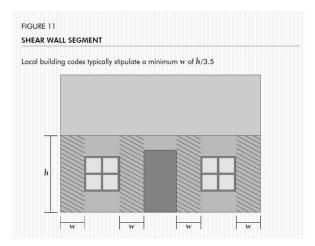
Collector (strut) – transfers the force from the diaphragm to the shear wall

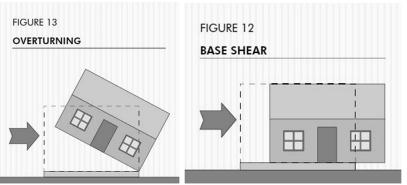
Peter von Buelow

REACTION

PROVIDED BY SHEARWALL

END SHEAR WALL

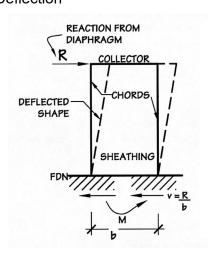

University of Michigan, TCAUP

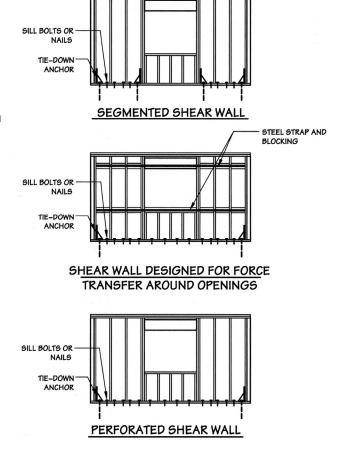

Slide 14 of 20

Shear Wall Design Elements

- Panel Thickness
- Panel Grade
- Nail spacing
- Base shear anchors
- Hold down anchors (at ends of each wall)
- Placement for lateral stability
- Fastening at edges (chords)

A Shear Wall	A Diaphragm
ls vertical	Is horizontal (or nearly so)
ls designed	Is designed
like a	as a simply
cantilevered	supported
beam	beam
Table has only	Table has both
blocked values,	blocked and
because a shear	unblocked
wall is always	diaphragm
blocked*	values


Peter von Buelow University of Michigan, TCAUP Slide 15 of 20


Three Shear Wall Types

(used in light framing)

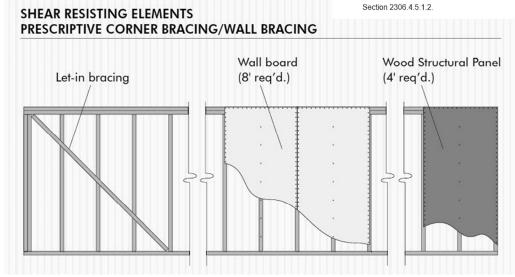
Design considerations:

- · Sheathing type and thickness
- · Sheathing nailing size and spacing
- Chord design tension and compression
- Collector design tension and comp.
- Anchorage hold-downs, shear ties
- Shear panel proportions h:w
- Deflection

Peter von Buelow University of Michigan, TCAUP Slide 16 of 20

Shear Wall Types

Acts like a vertical cantilever beam

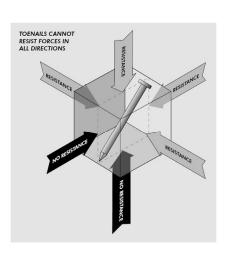

Let-in Wall Bracing – $45^\circ\,$ - $\,$ limited to single or top story Wall Board – requires 8 ft length

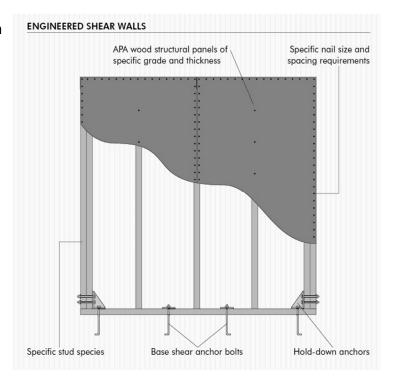
Wood Structural Panel – requires 4 ft length – 3 times stronger by length

TABLE 2305.3.4 MAXIMUM SHEAR WALL DIMENSION RATIOS

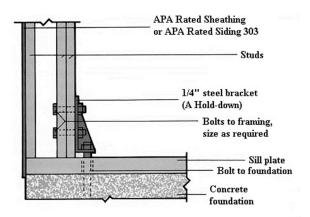
ТҮРЕ	MAXIMUM HEIGHT- WIDTH RATIO
Wood structural panels or particleboard, nailed edges	For other than seismic: 3 ¹ / ₂ :1 For seismic: 2:1 ^a
Diagonal sheathing, single	2:1
Fiberboard	11/2:1
Gypsum board, gypsum lath, cement plaster	1 ¹ / ₂ :1 ^b

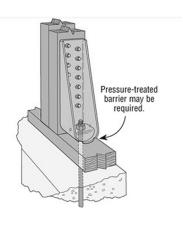
a. For design to resist seismic forces, shear wall height-width ratios greater than 2:1, but not exceeding $3^1/_2$:1, are permitted provided the allowable shear values in Table 2306.4.1 are multiplied by 2w/h. b. Ratio shown is for unblocked construction. Height-to-width ratio is permitted to be 2:1 where the wall is installed as blocked construction in accordance with

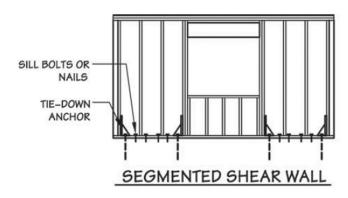



Peter von Buelow University of Michigan, TCAUP Slide 17 of 20

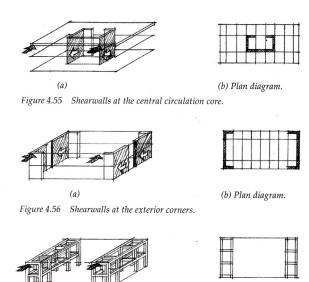
Shear Wall Connections


Connections need to transmit force in 6 directions (3 axes)


Toenails – not adequate Hold–down Anchors Base Shear Anchors



Anchors and Tie-downs



Peter von Buelow University of Michigan, TCAUP Slide 19 of 20

Multi-story shear walls

 $Figure\ 4.57\quad Rigid\ frames\ at\ end\ bays\ (can\ also\ comprise\ the\ entire\ skeleton).$

Brock Commons Tallwood House University of British Columbia, Vancouver, Canada

(b) Plan diagram.