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Beam Types A -+
A
FIXED FREE.

» Cantilever

* Simple

Simple with Cantilever

Continuous (multi-span)
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Support Conditions

Roller
Fixed in Fy

Hinge (Pinned)
Fixed in Fx
Fixed in Fy

Fixed
Fixed in Fx
Fixed in Fy
Fixed in Mz
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Connection Types

Bearing (or simple)

Slip Critical (or fixed)
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Internal Shear and Moment

Cutting any section through a beam will
reveal internal shear and moment forces
necessary to maintain static equilibrium.

The shears can be determined by
summing vertical forces and the
moments by summing moments.
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Sign Convention for Shear

+ the sum of the vertical forces to the
left of the cut is upwards

- the sum of the vertical forces to the
left of the cut is downwards

Sign Convention for Moment
+ the top fibers are in compression
- the top fibers are in tension

the European moment convention is the
reverse
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Sign Convention for Moment

+ positive curvature (holds water)
- negative curvature (spills water)

the European moment convention is the
reverse
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Relationships of Forces and Deformations

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can

be discovered by taking successive derivatives or integrals of the beam equations.
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Methods to Determine Values of Shear and Moment

1. Equilibrium Method

. Select a point along the beam
. Cut a section and draw the FBD
. Solve for the internal shear and moment forces at the section

2. Integration of Equations

. Write the equation of the load function

. Integrate load equation to get shear equation

. Solve integration constant (use end reaction)

. Integrate shear equation to get moment equation

. Solve integration constant (use point with zero moment, e.g. end point)

3. Semi-graphical Method

. Draw load diagram and solve end reactions with equilibrium equations.

. Start at left and construct the shear diagram using point loads and areas on load diagram
. Calculate areas of shear diagram to find change in value on moment diagram

. Find points of zero moment to begin moment diagram, e.g. end points

4. Superposition of Equations

. Break the loading into standard cases
. Use given equations to solve shear and moment for each case
. Add the cases to get combined values of original loading
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1. Equilibrium Method - procedure
loK
To plot the change of internal shear or moment ”5 Q
forces, a series of sections can be cut along the K ' l ) ‘X
beam. The exposed forces can be calculated. G ;I‘ K . e 1t4
A section should not be cut “through” an
applied force, but either a bit to the left or to the L$
right of the force.
AL
Xi
K
Either the “left” or “right” free body diagram may be o
used to calculate the forces. The sign convention rs
described earlier must be consistently applied. 1\
('K ’
1L X2 L
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1. Equilibrium Method - example

Tabulated Results of FBD Calculations

Cut Location Shear Moment
FromR, (ft) V (k) M (k-ft)
0- 0 0

0+ 6 0
1 6 6
2 6 12
3 6 18
4- 6 24
4+ -4 24
5 -4 20
6 -4 16
7 -4 12
8 -4 8
9 -4 4
10- -4 0
10+ 0 0
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1. Equilibrium Method - example

(WX)X/L
W= "KLF AL M

(GKjL__L_,[‘ v

Tabulated Results of FBD Calculations

Cut Location Shear Moment
From R, (ft) V (k) M (k-ft)
- 0

0 0

0+ 16 0
1 12 14
2 8 24
3 4 30
4 0 32
5 4 30
6 -8 24
7 -12 14
8- -16 0
8+ 0 0
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1. Equilibrium Method - example

(O 4,
M
wgp
¢ x v

Tabulated Results of FBD Calculations

Cut Location Shear Moment
From R (ft) V (k) M (k-ft)
0- 0 0
0+ 6 0

1 5.78 6.9

2 5.11 11.4
3 4.00 16.0
4 2.44 19.3
5 0.44 20.74
5.2 0 20.78
6 -2.00 20.0
7 -4.90 16.6
8 -8.24 10.0
9- -12.00 0

9+ 0 0
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Relationships of Forces and Deformations - procedure

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can
be discovered by taking successive derivatives or integrals of the beam equations.
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2. Shear and Moment by Integration - example

One method of solving shear and moment forces is to write the loading equation and solve
the integration equations for the shear and moment. One problem using this method can be
finding the constant of integration, particularly with discontinuous load functions.

-W Load (o) ﬁ
-wW

V= I wdx
V=-wx+C (
Shear :
; W 0
V=-wx+— ;
|
'
|
M = [Vax l
|
w o, wl .
M==2x"+=X+C " Moment OQ
W wi
M=-=x*+—x
2 2
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3. Shear and Moment by Semi-graphical Method — diagram relationships

By recognizing the diagrammatic relationships between curves and their derivatives and
integrals, shear and moment diagrams can be constructed based on areas and slopes of those
curves.

Moving from Upper to Lower Diagrams:

» The area between any two points on the
upper diagram is equal to the change in
value between same points on the lower
diagram.

» The degree of the curve increases by one
for each diagram.

» The value on the upper diagram is equal to
the slope of the lower diagram.

*  Where the upper diagram crosses 0 on the
axis, the lower diagram is at a maximum or
minimum.

» Points of inflection or “contraflexure”
(between + and — curvature) on the elastic
curve (deflected shape) are points of zero
moment.
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3. Semi-graphical Method

FRACTIONAL AREAS OF ENCLOSURE EECTANGLES

k= Va—p—2s —)
FRACTION OF RECTANGULAR
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3. Semi-graphical Method

Procedure:
1. Find end reactions L
2. Start at left end of V-Diagram and “apply “5-“ S swe: -2

load from left to right

3. Calculate areas of V-Diagram

4. Find max. and min. values on
M-Diagram using V-Diagram areas
between axis crossings.

5. Check slope and + or - values
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3. Semi-graphical Method

example s 7 150 K-FT
L D
lof lo!

Cantilever Beam T
ok

-0k

~150 K-Fr

University of Michigan, TCAUP Structures | Slide 19 of 28

3. Semi-graphical Method

example
g1.2"
Beam with cantilever wz 200 PLF 2 0, LKF J
L . A
T K Al@
1.2 :
! 7

University of Michigan, TCAUP Structures | Slide 20 of 28




3. Semi-graphical Method

example
Simple beam L
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3. Semi-graphical Method - Superposition
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Equations Method

For simple spans:

V.« IS the larger reaction

max

For symmetric loadings:
M. isatC.L.

max

For cantilevers:
BothV_. and M

max max

In these equations:

w = load per unit length (PLF or KLF)

W = the total load (LB or KIP)

University of Michigan, TCAUP

are at the support

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

y Total Equiv. Uniform Load . . . . .. =wl
ahio B R=V i =¥
[ITITTITTTTIIT 2
R R . 1
e £ope £ Y @iRasEeitaiiaiimts =w|g-x
2
VI_ M. (atcenter) . . . ... ... ... =&
Shear _IV 8
My =%(1—x)
"
MmL I | Apax (atcenter) . . .. ... ... .. = JSSZlEI
£
Moment Ae e =%(P 22+ %)
2. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO ONE END
Total Equiv. Uniform Load . . . . . . . % = L0264 W
< ’W Ri=Vioooo =%
et T ] 2w
A, A, Ry=Vomax oo voeeeeeeens =5
fe 57741 —~] wowe
4 P L L
v 3P
o [/ _— 2w
A Musg (@x===5THD oo =55 = 128w
Wx »
My ===~
M,..L 3P =52
3
L Woment Amas (a(x:l\“—‘/—% =.5193]) . . =o.01so%
A e = 183';”2(31‘ — 1022 + 71%)
7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER
p Total Equiv. Uniform Load . . . ....... =2P
<-~»1 & R=V i =§
R
i é e é —] My (atpointofload) . .......... = %’
Shear t,/ M, [when x< —] ............. =%
= Ame (at point of load) ikl
w "‘“‘ 48EI
L promry A, [when x< —] ............. = 4: Z, GP-4x)
AISC Manual
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4. Superposition of Equations

Equations of shear or moment may be
combined (superimposed) for any number

of cases.
BUT

The appropriate location along the beam for

which the equation is valid must be

maintained

Thus
At the reaction, V = P/2 + wL/2

And at the C.L. M = PL/4 + wL?/8

University of Michigan, TCAUP
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Non-symmetric 5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END
1 Ri=Vimax. . . . . . . . . = —Z% @i—a)

wa Rz=V2 . . . . . ¢« ¢« ¢« &« « = E—a;‘
For more complex R 4 Rz v, (when x < a) A L T
loads, care must be — ™M max.(atx - %’_) L. = F;::
taken_to combine Y' — ‘l'\l Mx (when x < a) O R;x—f};—z
equations at the same L Ry Shear 2
location or point on * Mx  (whenx>a) ... o= Ral=2
the beam (x). il ax (when x< a) = ;—é‘”(az(zl—a)z-zaxz(21-a)+zx=)

o Ax (when x > a) e e . = _wa;(lTnx) (4x] —2x2 — a2)

8. SIMPLE BEAM-—CONCENTRATED LOAD AT ANY POINT

I Total Equiv. Uniform Load =8 "’:b
x> |P Pb
*I R1=V;(max. when a < b) e =
R, R, Ra= Vg(max. when a > b) e e . = —Ell
a h.
M max.( at point of load ) « h e . = -—?—
X
V{1 Pbx
¥ My ( when x < a ) e e . m
[TTIITTTT dve 1
Shear a(a+2b) Pab (a +2b) ¥V 3a (a + 2b)
Amax. (atx= ‘{—— =
( X 3 whena>b 57 ETT
Mmax. Aa ( at point of load ) . = ';a;'b;
Moment ax ( when x < a ) Ce e = —G?:XI (12— b2 —x1)
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4. Superposition of Equations - example
find x at M,,,,, for combined asymmetric cases

(NOTE: VARIABLES DIFFER
ENP REACTIONS IN DIFFERENT EQUATIONS)

w (ZIP’J> _E_L_ ] BK
Rz 24 3 X l"’i'“" == 1 \L

_ 2. (10) (2(z0)- 10) 8 (5)
K™ 7(z0) 3 20 Tr‘K ) T“K

Ro= 15 r2 = 138 A
|
[
MOMERT EQUATIONS AT X |
w FLx '
My = R,9( = T + '-7—‘ [
(<]
D Ao X : DIFFERENTIATE AND SOWE |
AT © (M n)x) 7[1
Pb —uK
Kl - wX o l
£ | |
5 =2t L= 1O | l
XA~ S'G'l | Il
z
Ah 2(25Y | &(5X5.5) | |
Mnax = 16-(8';7 Z 20 o : — O

[ 85 B o R L | B e ) W |
AN
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34. CONTINUOUS BEAM—THREE EQUAL SPANS—ONE END SPAN UNLOADED

Simple vs. Continuous Beams e ——
AL 1 18 1 1c l —|p
Ra=0383wl  Re=120ul Ro=0480wl o ¥ o0
R . 0.383 wi e 0583 wl T, 0033wl :
Simple Beam SHEARw o6 w0417 wl RSt
— End moments =0 —0.1167 wiz
. +0.0|735 wi? /(rh’\ +0.0534 wiz | —0.0333 wiz
— when symmetric, M__, at C.L. ~Tqr] —
max MOMENT 03831 05831

e.g. wL?/8 = 0.125wlL?

A Max. (0.430 / from A) = 0.0059 wi‘/El

35. CONTINUOUS BEAM—THREE EQUAL SPANS—END SPANS LOADED

+ Continuous Beam i el
— Exterior end moments = 0 Al o g8 0o J8 3 P
. RA = 0.450 wl Re = 0.550 wl Rc = 0.550 wi Ro = 0.450 wl
— Interior support moments are S — 050wl e
. 0.550 wl -
usually negative SHEAR I
. 2 .1013 wiz
— Mid-span moments are usually +°',1°L1fu"ﬁy TS ?ﬁw
. MOMENT | “=i e
positive

A Max. (0.479 . from A or D) = 0.0099 wi*/El

— End + Mid = 0.125wL?

36. CONTINUOUS BEAM—THREE EQUAL SPANS—ALL SPANS LOADED

wi wl
I T T T T T L L LT LT O TP LT LTI T T T T T T T
Al 1 T8 1 fc 1 D
T g T
Ra = 0.400 wl Re = 1.10 wl Rc = 110wl Rp = 0.400 wl
0.400 2t ez 0500 wlhrre 0600wl TTrrreeee
0.600 wl 0500wl 0-400 wl
SHEAR
—0.100 wiz —0.100 wiz
2
Note: moments shown reversed HO0B0wE AN H005ul AN m" wl
T —
MOMENT | 0 4001 05001 | 0.5001 0.400 1
A Max. (0.446  from A or D) = 0.0069 wi4/EIl
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Moment Diagram vs. Catenary Curve

For a gravity loaded simple span beams,
the shape of the of the moment diagram
is the inverse of the catenary curve.
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