Architecture 314 Structures I

Bending Stresses in Beams

- Elastic Bending
- Stress Equation
- Section Modulus
- Flexure Capacity Analysis
- Flexure Beam Design

University of Michigan, TCAUP

Structures I

Slide 1 of 19

Elastic Bending

Flexure results in internal tension and compression forces, the resultants of which form a couple which resists the applied moment.

The application of load causes the member to bend in a curve. This means the initial parallel plane sections, while remaining plane, now follow the radii of the curves.

Notice that by the geometry of the curved member the top edge is shortened and the bottom edge is lengthened. Only the neutral axis remains its original length.

Elastic Bending

The internal moment, $M_{\rm r}$ can be expressed as the result of the couple $R_{\rm c}$ and $R_{\rm t}$

$$M_{\rm r} = R_c \cdot \overline{y}_1 + R_t \cdot \overline{y}_2$$

In turn, the forces R_c and R_t , can be written as the resultants of the "stress volumes" acting through the centroids of those volumes. The average unit stress, s = fc/2 and so the resultant R is the area times s:

$$R = A \cdot s$$

Using similar triangles, s can be expressed as:

s =	\overline{x}	and	$s = \frac{f_c \cdot \overline{x}}{1 - \frac{1}{2}}$
$ f_c $	С		° C

Substituting these values back into the moment equation gives:

$$M_{\rm r} = \frac{f_c A_c \overline{x}_1 \overline{y}_1}{c_c} + \frac{f_t A_t \overline{x}_2 \overline{y}_2}{c_t}$$

University of Michigan, TCAUP

Structures I

Slide 5 of 19

ResA

Rc

Elastic Bending

By definition:

$$I_x = A\overline{xy}$$

And for homogeneous materials with $E_c=E_t$

$$M_{r} = \frac{f I_{1}}{c} + \frac{f I_{2}}{c} = \frac{f}{c} (I_{1} + I_{2})$$

Or using the I for the whole section:

$$M_r = \frac{f I}{c}$$

And so,

$$f = \frac{M c}{I}$$

The Section Modulus is:

$$S = \frac{I}{c}$$

With c = h/2 at extreme fibers of a symmetric section.

AREA A

Ь

C

42

X=4,

С

So, at extreme fibers:

$$M = f S$$

And:

Beam Capacity

Beam Capacity Analysis - procedure

- 1. Determine section properties. (from table)
- 2. Choose safe allowable stress. (depends on bracing)
- 3. Calculate allowable moment capacity.
- 4. Set equal to applied moment and find load.

WIDE FLANGE SHAPES

		t Area of Section A	n Depth of on Section d	Flange			Axis X-X			Axis Y-Y			
Weigh Section per Number Foot	Weight per Foot			n Width b _f	Thick- ness t,	Web Thick- ness t_	ł _x	\$ _x	ſx	Ļ	s _y	ſy	۲
	lb	in.²	in.	in.	in.	in.	in.4	in.ª	in.	in.4	in.ª	in.	in.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9,960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

 $M = F_b S$

 $M = \frac{wl^2}{wl^2}$

Beam Capacity Analysis - example

Given:

Beam = W27x178 $Sx = 502 in^3$ Fy = 50 ksi Fb = .66Fy = 33 ksi (braced by joists)

Find:

Floor capacity

WIDE FLANGE SHAPES

X

				Fla	nge			Axis X-)	(Axis Y-Y		
Section per Number Foot	Weight per Foot	t Area of Section A	Depth of Section d	Width b,	Thick- ness t,	Web Thick- ness t.,	ł _x	s,	ſx	ly	s _y	ry	۲
	lb	in.²	in.	in.	in.	in.	in.4	in.ª	in.	in.4	in.ª	in.	in.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	(502)	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

University of Michigan, TCAUP

Structures I

Slide 9 of 19

Beam Capacity Analysis

Given:

Beam = W27x178 Sx = 502 in3 Fy = 50 ksi Fb = .66Fy = 33 ksi (fully braced)

Floor capacity

$$\begin{aligned} \mathcal{U} &= 33^{K51} 502_{M}^{3} = 16566^{K-1} = 13805^{K-1} \\ \mathcal{U} &= 13805^{K-1} \\ \mathcal{U} &= \frac{\omega f^{2}}{8} \\ \omega &= \frac{M^{2}}{f^{2}} = \frac{13805(s)}{60^{2}} = 3.068^{K/1} = 3068^{K/1} \\ \text{PSF} &= \frac{\omega}{f_{1/2}} = \frac{3068}{50/2} = 123 \text{ PSF} \end{aligned}$$

Beam Design - procedure

- 1. Choose a steel grade and allowable stress.
- 2. Determine the applied moment (e.g. moment diagram)
- 3. Calculate the section modulus, S_x

$$S_x = \frac{M}{F_b}$$

4. Choose a safe section. (from S_x table)

	ALLOWABLE STRESS DESIGN SELECTION TABLE For shapes used as beams S _x										
	$F_y = 50 \mathrm{k}$	si			Denth			$F_y = 36$	si		
Lc	Lu	M _R	S _x	Shape	d	F'y	L _c	Lu	M _R		
Ft	Ft	Kip-ft	In ³		In	Ksi	Ft	Ft	Kip-ft		
2.9	3.6	47	17.1	W 12×16	12	_	4.1	4.3	34		
5.4	14.4	46	16.7	W 6×25	63/8	-	6.4	20.0	33		
3.6	4.4	45	16.2	W 10×17	101/8		4.2	6.1	32		
4.7	7.1	42	15.2	W 8×18	81⁄8	-	5.5	9.9	30		
2.5	3.6	41	14.9	W 12×14	117⁄8	54.3	3.5	4.2	30		
3.6	3.7	38	13.8	W 10×15	10	-	4.2	5.0	27		
5.4	11.8	37	13.4	W 6×20	61/4	62.1	6.4	16.4	27		
5.3	12.5	36	13.0	M 6×20	6	-	6.3	17.4	26		
1.9	2.6	33	12.0	M 12×11.8	12	_	2.7	3.0	24		
3.6	5.2	32	11.8	W 8×15	81/8	_	4.2	7.2	23		
2.8	3.6	30	10.9	W 10×12	97⁄8	47.5	3.9	4.3	22		

Beam Design - steel

Using Steel W section:

- 1. Choose a steel grade: Using $F_y = 50$ ksi $F_b = 0.6 F_y$
- 2. Determine the applied moment

Beam Design - steel

Using Steel W section:

2. Calculate section modulus, S_x

$$S_{x} = \frac{M}{F_{b}} = \frac{32^{\kappa-1}(12)}{0.6(50 \, \text{ks})}$$

 $S_{x} = 12.5 \, \text{m}^{3}$

Beam Design - steel

Using Steel W section:

3. Choose a safe section. (from S_x table)

 $S_x \ge 12.8 \text{ in}^3$

	ALLOWABLE STRESS DESIGN SELECTION TABLE											
	For shapes used as beams S _x											
		$F_y = 50$	(si	c		Depth	E'	$F_y = 36$ ksi				
	Lo	Lu	M _R		Shape	d	r _y Kai			M _R	4	
	FI 2.9	FI 3.6	47	17.1	W 12×16	12		4.1	4.3	34	4	
	5.4 3.6 4.7	14.4 4.4 7.1	46 45 42	16.7 16.2 15.2	W 6×25 W 10×17 W 8×18	63/8 101/8 81/8		6.4 4.2 5.5	20.0 6.1 9.9	33 32 30		
	2.5	3.6	41	14.9	W 12×14	11%	54.3	3.5	4.2	30		
	5.4 5.3	3.7 11.8 12.5	36 37 36	13.8 13.4 13.0	W 10×15 W 6×20 M 6×20	6¼ 6	62.1 —	6.4 6.3	16.4 17.4	27 27 26		
	1.9 3.6 2.8	2.6 5.2 3.6	33 32 30	12.0 11.8 10.9	M 12×11.8 W 8×15 W 10×12	12 8½ 97%	 47.5	2.7 4.2 3.9	3.0 7.2 4.3	24 23 22		
University of Michigan,	TCAUP				Structure	s I					S	Slide 15 of 19
Beam Design – Glulam Using Glulam Timber: $F_b = 1250 \text{ psi}$ (DF grade L3) $S_x = \frac{M_{APPLIED}}{F_b} = \frac{32.000 ^{*-1}(12)}{1250 \text{ psi}} = 307.2 \text{ m}^3$												
Table 5B Refere	nce Des	sign Va	lues for	Struct		nated Se		d Timbe	er mal load	duration and	l dry service c	onditions See
NDS 5.3 f	or a compr	ehensive of	description of	of design	value adjustment fact	ors.)			nu load			
		All Loadi	ng	Us	ally Loaded	Bend	ng about	Y-Y Axis		Bending Ab	out X-X Axis	Fasteners
	For	dulus of sticity For		Tension Parallel to Grain	Compression Parallel to Grain	Loa Fa Bend	ded Parallel ces of Lamin ing	to Wide ations Shear to Gra	Parallel ain ⁽¹⁾⁽²⁾⁽³⁾	Loaded Perper Faces of L Bending	ndicular to Wide aminations Shear Parallel to Grain ⁽³⁾	
Combination Symbol	Enección Calculations E (10 ⁶ psi)	Calculations E _{min} (10 ⁶ psi)	Compression Perpendicular to Grain F _{eL} (psi)	2 or More Lami- nations F _t (psi)	4 or More 2 or 3 4 or Lami- Lami- Lami- L nations nations nations F _c F _c (psi)	r More 3 ami- Lan ations natio F _{by} F _t (psi) (ps	ni- Lam ons natio y F _{by} i) (ps	ni- ons v i) (F _{vy} psi)	2 Lami- nations to 15 in. Deep ⁽⁴⁾ F _{bx} (psi)	F _{vx} (psi)	Specific Gravity for Fastener Design G
VISUEIIIya CIFE(I) CONVESICI 1 DF L3 2 DF L2 3 DF L2D 4 DF L1C 5 DF L1	1.5 1.6 1.9 1.9 1.9 2.0	0.79 0.85 1.00 1.00 1.06	560 560 650 590 650	950 1250 1450 1400 1650	1550 1250 1950 1600 2300 1900 2100 1950 2400 2100	1450 123 1800 160 2100 183 2200 200 2400 210	50 100 00 130 50 155 00 165 00 180	10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	230 230 230 230 230 230	1250 7360 2000 2100 2200	265 265 265 265 265 265	0.50 0.50 0.50 0.50 0.50 0.50

Section Properties

Using Glulam Timber:

Glulam Timbers - 8 3/4" wide

 S_x required = 307.2 in³

able 1C	Section Properties of Western Species Structural Glued Laminated Timber (Cont								
Depth	Area		X-X Axis		Y-Y	Axis			
d (in.)	$A(in.^2)$	$I_x(in.^4)$	$S_x(in.^3)$	r _x (in.)	$I_y(in.^4)$	$S_y(in.^3)$			
	· 花头与我们们!		8-3/4 in. Width	$(r_y = 2.526 \text{ in.})$					
9	78.75	531.6	118.1	2.598	502.4	114.8			
10-1/2	91.88	844.1	160.8	3.031	586.2	134.0			
12	105.0	1260	210.0	3.464	669.9	153.1			
13-1/2	118.1	1794	265.8	3.897	753.7	172.3			
15	131.3	2461	328.1	4.330	837.4	191.4			
16-1/2	144.4	3276	397.0	4.763	921.1	210.5			
18	157.5	4253	472.5	5.196	1005	229.7			
19-1/2	170.6	5407	554.5	5.629	1089	248.8			
21	183.8	6753	643.1	6.062	1172	268.0			

University of Michigan, TCAUP

Structures I

Slide 17 of 19

Section Properties

PROPERTIES OF SAWN LUMBER SECTIONS

x ____ x

Sawn Lumber

Nominal Size b \times d	Actual Size b \times d	Area in. ²	I_x in. ⁴	S_x in. ³
1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
1×6	$'' \times 5\frac{1}{2}$	4.13	10.40	3.78
1×8	$'' \times 7\frac{1}{4}$	5.44	23.82	6.57
1×10	$'' \times 9^{1}_{4}$	6.94	49.47	10.70
1 × 12	$" \times 11\frac{1}{4}$	8.44	88.99	15.83
2×4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
2×6	$'' \times 5\frac{1}{2}$	8.25	20.80	7.56
2×8	$'' \times 7\frac{1}{4}$	10.88	47.64	13.14
2×10	" $\times 9\frac{1}{4}$	13.88	98.93	21.39
2×12	$'' \times 11\frac{1}{4}$	16.88	177.98	31.64
3×4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
3×6	$" \times 5\frac{1}{2}$	13.75	34.66	12.60
3×8	$'' \times 7\frac{1}{4}$	18.13	79.39	21.90
3×10	$'' \times 9^{1}_{4}$	23.13	164.89	35.65
3 × 12	$'' \times 11\frac{1}{4}$	28.13	296.63	52.73
4×4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
4×6	$" \times 5\frac{1}{2}$	19.25	48.53	17.65
4×8	$'' \times 7\frac{1}{4}$	25.38	111.15	30.66
4×10	$" \times 9\frac{1}{4}$	32.38	230.84	49.91
4 × 12	$" \times 11\frac{1}{4}$	39.38	415.28	73.83

Modes of Failure

Strength

- Tension rupture
- Compression crushing

Stability

- Column buckling
- Beam lateral torsional buckling

Serviceability

- Beam deflection
- Building story drift
- cracking

University of Michigan, TCAUP

Structures I

Slide 19 of 19

