Statics and

Force Vectors

- Components
- Resultants \& Equilibrants
- Graphic method
- Analytic method

Simon Steven from Weeghconst (1586)

Force Definitions

Single vector

- Magnitude
- Direction
- Point of Application

Force Transmissibility

- A force can be resolved at any point along its line of action
- The external affect on a body is unchanged

Force Systems

- Concurrent - Coplanar
- Non-concurrent - Coplanar
- Concurrent - Non-coplanar
- Non-concurrent - Non-coplanar

COACURRENT

 NON-CONCURRENT

Force Addition

Inline forces

- By linear addition

Orthogonal forces

- Pythagorean Theorem

Graphic Method

Addition of Two Forces

Force Parallelogram

The diagonal is the vector addition of the two sides

Resultant

Addition of two or more forces

- Force parallelogram
- Force polygon

Equilibrant

Opposite and equal to the resultant

Find the Balancing Forces

Use the graphic approach to determine the force components in the rope with a suspended load of 20 pounds. The slope of the rope is $1: 10$.

What is the total force in the rope?

Force Components

Orthogonal

- Horizontal
- Vertical

Force Decomposition

$\frac{\mathrm{C}}{\mathrm{c}}=\frac{\mathrm{A}}{\mathrm{a}}=\frac{\mathrm{B}}{\mathrm{b}}$

$P=\sqrt{N^{2}+M^{2}}$

Force Components

Orthogonal

- Horizontal
- Vertical

Decomposition of a Normal Force

$\frac{C}{N}=\frac{A}{a}=\frac{B}{b}$

Graphic Method

Addition of Multiple Forces

Force Polygon

Forces add "Head to Tail"

The resultant closes the figure "Tail to Head"

Analytic Method

Addition of Multiple Forces

Break each force into orthogonal components

Sum all vertical and sum all horizontal

Find the resultant of the orthogonal resultants

Trig Formulas

Addition of Two Forces

or
Decomposition of One Force

Orthogonal
Pythagorean Theorem

Non-orthogonal
Law of Sines

$\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}$

Simon Stevin

Originator of Vector Analysis
The vector analysis of a "perpetual motion machine", from Weeghconst (1586)

1. Take G 1 and G 2 to be the gravitational force on the balls (weight).
2. Break these two unequal forces into orthogonal components, normal to and along the side (N and S)
3. Because G is normal to the base, the orthogonal component triangles will be similar.
4. S_{1} and S_{2} can be seen to be equal and proportional to the height of the original triangle. If G forces are scaled $1: 1$ with lengths L, then $S_{1}=S_{2}=h$, therefore the forces down each slope are balanced.

$S_{1}=S_{2}=h$
