Plane Trusses

 Method of JointsDefinition and Assumptions
Nomenclature
Stability and Determinacy
Analysis by joints

Definitions and Assumtions

2 Force Members
Pinned Joints
Concurrent Member Centroids at Joints
Joint Loaded

Straight Members
Small Deflections

Nomenclature

Panels

- Segments: left to right

Joints

- Upper: U1, U2, U3...
- Lower: L1, L2, L3...

Members

- Chords

- Web

Force Systems

2D Trusses

- Concurrent Coplanar

3D Trusses

- Concurrent Non-Coplanar

University of Michigan Architectural Research Lab Unistrut System, Charles W. Attwood

Stability and Determinacy

For:

- j joints

- m members
- r reactions (restraints)

$$
k=2 j-r
$$

Three conditions

- $\mathrm{m}<\mathrm{k}$ unstable
- $\mathrm{m}=\mathrm{k}$ stable and determinate
- $m>k$ stable and indeterminate

Quiz

For each of the following trusses, determine whether they are:

A) Stable
B) Unstable

$$
k=2 j-r
$$

- $\mathrm{m}<\mathrm{k}$ unstable
- $\mathrm{m}=\mathrm{k}$ stable and determinate
- $m>k$ stable and indeterminate

Truss 2

Vierendeel "Truss"

Not a true truss

Moment frame structure
Rigid joints as moment connections Flexure in members

Bar depth varies with global shear

Salk Institute, La Jolla
Architect: Louis Kahn
Engineer: Komendant and Dubin

Analysis

Method of Joints

Method of Sections

Graphic Methods

James Clerk Maxwell 1869
M. Williot 1877

Otto Mohr 1887
Heinrich Müller-Breslau 1904

Computer Programs

Dr. Frame (2D)
STAAD Pro (2D or 3D)
West Point Bridge Designer

Method of Joints - procedure

1. Solve reactions (all external forces)
2. Inspect for zero force members (T's \& L's)
3. Cut FBD of one joint

4. Show forces as orthogonal components
5. Solve with $\Sigma \mathrm{F}_{\mathrm{H}}$ and $\Sigma \mathrm{F}_{\mathrm{V}}$ (no $\Sigma \mathrm{M}$)
6. Find resultant member forces (Pythagorean Formula)

Inspection of Zero Force Members

T -joints
L - joints

Method of Joints - example

DETERMINE ALL MEMBER FORES USING THE METHOD OF JOINTS.

1. Solve the external reactions for the whole truss.

```
BEKCTIONS:
\sumFH}=0=30-\mp@subsup{A}{1+}{}\quad\mp@subsup{A}{H}{}=3\mp@subsup{0}{}{k}
\SigmaMCA=O=30(9)+60(9)+60(18)+60(27)
                        +30(36)-Bv(36)
    Bv}(36)=459
    Bv}=127.\mp@subsup{5}{}{k}
\Sigma\mp@subsup{F}{V}{}=0=1, 1, 127.5-2(30)-3(60)=0
    Av=112.5
```


Method of Joints - example

2. T or L joints by inspection.
3. Cut FBD of joint
4. Show orthogonal components
5. Solve by Σ F horz. and vert.

Method of Joints - example

Continue with joints having only one unknown in either horizontal or vertical direction. Generally work starting at the reactions.

$\Sigma F_{v}=-30+112,5-\sqrt{A D_{v}}=0$
$\overline{S D_{v}}=82,5^{k}$
$\overline{A D_{H}}=\overline{A D}_{V}=82.5^{\mathrm{K}}$

$$
\begin{aligned}
& \begin{array}{c}
\Sigma F_{v}=0=-30+127.5-\overline{B F}_{v} \\
\overrightarrow{B F_{V}}=97.5^{16}
\end{array} \\
& B F_{v}=B P_{1+}=97.5^{k} \\
& \overrightarrow{B F}=\sqrt{97.5^{2}+97.5^{2}}=137.9^{\mathrm{k} \mathrm{comp}} \\
& \Sigma F_{4}=0=97.5-\overline{B J} \\
& B J=97.5^{k} \text { Tows }
\end{aligned}
$$

Method of Joints - example

Continue moving across the truss, joint by joint. Solve by ΣF_{H} and ΣF_{V}.

$$
\Sigma F_{v}=\frac{0}{\bar{E} H_{v}=22,5, \bar{E}}
$$

$E H_{V}=E H_{H}=22,5$ $\overline{E H}=\sqrt{22.5^{2}+22.5^{2}}=31.82^{\mathrm{k}}$ comp $\Sigma F_{1+}=0=-112.5-22.5+\overline{H I}$ HI = 135^{K} TENSION

Method of Joints - example

Continue moving across the truss, joint by joint. Choose joints that have only one unknown in each direction, horizontal or vertical.

$$
\begin{aligned}
& \Sigma F_{H}=-135+97,5+\overline{E I}_{H}
\end{aligned}
$$

$$
\begin{aligned}
& E J=\sqrt{37.5^{2}+37.5^{2}}=53,03^{k} \operatorname{comp} \\
& \Sigma F_{v}=0=\bar{F}-37,5=0 \\
& \bar{F}_{J}=37.5^{\pi} \text { 㘿 }{ }^{(S i o n}
\end{aligned}
$$

Method of Joints - example

Solve the joints with the most members last.

Check that all forces balance.

Inspect the final solution to see that it seems to make sense.

Qualitative T or C

For typical gravity loading:
(tension=red compression=blue)

Top chords are in compression

Bottom chords are in tension

Diagonals down toward center are in tension (usually)

Diagonals up toward center are in compression (usually)

Qualitative Force

For spanning trusses with uniform loading: (tension=blue compression=red)

Top and bottom chords greatest at center when flat (at maximum curvature or moment)

Diagonals greatest at ends (near reactions, i.e. greatest shear)

