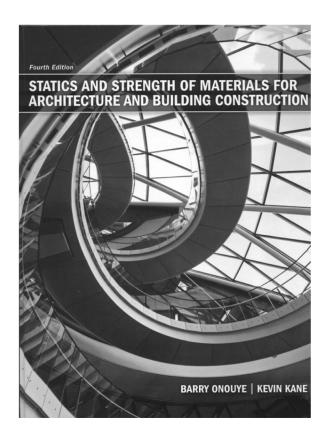
ARCHITECTURE 314 Structures I

Course Introduction:

Course Syllabus
Course Schedule
Online Resources
Introduction to Structures


Teaching Staff:

Prof.

Dr.-Ing. Peter von Bülow pvbuelow@umich.edu

GSI:

Alireza Fazel arfazel@umich.edu 002

University of Michigan, TCAUP Structures I Slide 1 of 11

Course Organization

- Lectures 2 per week
- Recitation Wednesday
- 26 Lecture Quizzes
- 12 Topic Canvas Quizzes
- 16 HW Problems on website
- Evaluation –

26 lecture quizzes	250
12 topic quizzes	240
16 HW Problems	875
Bridge Project	250
10 Recitation Labs	200
TOTAL	1815

Text – (required)

Statics and Strength of
Materials for Architecture and
Building Construction (any edition)
by B. Onouye & K. Kane

- Example Problems on website
- Website

 http://www.structures1.tcaup.umich.edu

ARCHITECTURAL STRUCTURES I Syllabus

Dr.-Ing. Peter von Buelow pvbuelow@umich.edu Office 1205c TCAUP Phone (734) 763-4931
 Lectures
 MF
 001
 10:30-11:30 + posted online

 Recitation
 W:
 002
 10:30-11:30 Alireza Fazel

 003
 9:30-10:30 ?

arfazel@umich.edu

Catalog Description

This course covers the basic principles of architectural structures, including the influence of geometric, sectional, and material properties related to flexure and shear in beam and framed systems; vector mechanics with application to analysis of trusses, catenaries, and arches; diagrammatic analysis of beams for bending moment, shear, and deflection as well as the study of structural framing systems for vertical and lateral loads.

Objectives

Students are introduced to the fundamentals of statics and mechanics, as well as the behavior of structural materials and simple elements and systems subjected to gravity and lateral loads. Diagramming of force distribution in beams as well as topics of stress, strain and stability are covered. Through classroom demonstrations as well as physical construction and testing, aspects of strength and stability of structural systems are examined.

Organization

The course is lecture based, and the concepts and procedures are taught in this context with additional homework problems solved by the students. Weekly recitations provide opportunity for small demonstration labs as well as student-instructor interaction. A group design and construction project (load testing of a bridge) offers a chance to test out concepts covered in the class. Computer facilities, including software, are available for supporting computations. A course web site is used to post all lectures, homework problems, as well as other information for the class (http://www.structurest.tcaup.umich.edu/. Weekly topic quizzes will also be posted on the course Canvas site.

Evaluation

Evaluation is based on an accumulated total number of points. Points are earned based on performance in all course activities – lecture quizzes, topic quizzes (Canvas), homework problems, recitation labs, and the bridge project. Grades are based on the total number of points achieved during the semester:

26 lecture quizzes, 10pts each	250	
2 topic quizzes, 20pts each	240	
6 homework problems, 5 pts / question	875	
oridge testing project	250	
10 recitation labs, 20 pts each	200	ì
TOTAL	1815	í

The point scale relates to a full range of letter grades assigned as follows:

		Α	1694	A-	1634	-
B+	1573	В	1513	B-	1452	./
C+	1392	C	1331	C-	1271	V
D+	1210	D	1150	D-	1089	
		F	1088 and	belov	N	

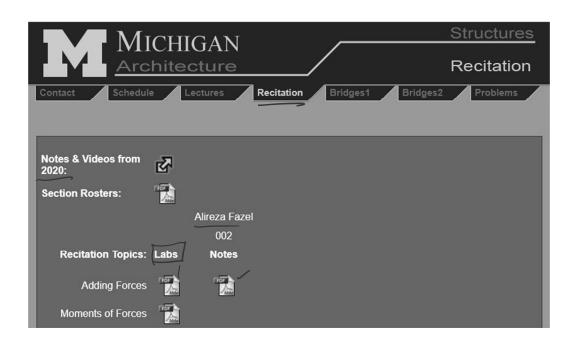
By University policy the minimum passing grade for undergraduates is a D (1150) and for graduate students it is a C (1331).

University of Michigan, TCAUP Structures I Slide 2 of 11

	DATES	TOPICS	Reading (Onouye 4 th ed.)	HW PROBLEMS
Course Schedule	AUG 28 AUG 30 SEP 1		Ch. 1: pp. 1-14 Ch. 2.1: pp. 15-22 Ch. 2.2 & 2.3: pp. 23-41	Structures video TA 645.S78 1. Dead Load Calculation (9.3)
_	SEP 4 SEP 6 SEP 8		* LABOR DAY ***** NO CLASS ***** I Ch.2.3: pp.42-60 Ch.3.6: pp.175-184	
	SEP 11 SEP 13	Topic Quiz 2 Force Systems: Equilibrium Recitation 2. Moment of a Force	Ch. 2.4 – 2.6: pp. 61-95	Three Vector Addition (9.10) Moment of a Force (9.15)
Lectures	SEP 15	Equilibrium of Rigid Bodies Topic Quiz 3	Ch. 3.2: pp. 111-118	5. Parallel Force Systems (9.17)
Monday & Friday – on website	SEP 18 SEP 20 SEP 22	Recitation 3. Equilibrium Catenary Arches and Shells + Bridge	Ch. 3.1: pp. 96-110 Project Introduction	C. Franklindians of Picid Podics (C.CA)
Recitation	SEP 25 SEP 27 SEP 29	Topic Quiz 4 Plane Trusses (by Joints) Recitation 4. Truss Stability Plane Trusses (by Sections)	Ch. 3.3: pp. 119-127	Equilibrium of Rigid Bodies (9.24)
	OCT 2	Topic Quiz 5 Plane Trusses (by Graphic Statics)	Ch. 3.3: pp. 128-152	7. Cable Systems (10.1)
Wednesday – 10 Labs	OCT 4 OCT 6	Recitation 5. Graphic Statics Pinned Frames Topic Quiz 6	(interim bridge report due - 10.6) Ch. 3.4: pp. 153-163	8. Truss Systems (10.8)
Exercise Problems /	OCT 9 OCT 11 OCT 13	Load Tracing & Floor Systems	Ch. 3.5: pp. 164-174 Ch. 4.1: pp. 195-230	
on course website	OCT 16 OCT 18	Recitation	LL STUDY BREAK ***** FALL STUDY B	9. Three Hinged Arches (10.15) REAK ***** FALL STUDY BREAK *****
	OCT 20	Topic Quiz 8	Ch. 4.2: pp. 231-250 Ch. 5.1: pp. 251-266	10. Floor Systems (10.22)
Homework	OCT 23 OCT 25 OCT 27	Recitation 7. Elasticity Elasticity and Deformation	Ch. 5.2-5.4: pp. 267-293	11. Elastic Deformation (10.29)
on course website	OCT 30 NOV 1		Ch. 6.1 - 6.4: pp. 300-331	
	NOV 3	Recitation		
Course Website	NOV 6 NOV 8 NOV 10	Shear and Bending Forces Recitation 8. Moment of Inertia Shear and Bending Forces	Ch. 7.1-7.3: pp. 332-345 Ch. 7.4-7.5: pp. 346-364	
http://www.umich.edu/~arch314	NOV 13	Topic Quiz 10 Bending Stresses	Ch. 8.1-8.2: pp. 365-381	12. Centroid of Area (11.12)
	NOV 15 NOV 17		Ch. 8.1-8.2: pp. 365-381	13. Moment of Inertia (11.19)
		video "When Engineering Fails" ******* THANKSGIVING RECESS ****	*** THANKSGIVING RECESS ****** THA *** THANKSGIVING RECESS ****** THA	NKSGIVING RECESS ******
	NOV 27 NOV 29 DEC 1	Recitation 9. Shear Stress Deflection of Beams	Ch. 8.3-8.4: pp. 382-401 (final bridge report due – 11.29) Ch. 8.5: pp. 402-418	14. V & M Diagrams (11.27)
	DEC 4 DEC 6	Topic Quiz 12 Combined Stress Recitation 10. Deflection	Ch. 8.5: pp. 402-418	15. Horizontal Shear (12.3)
				16. Deflection of Beams (12.10)
University of Michigan, TCAUP		Structures I		Slide 3 of 11

Course Website

http://www.structures1.tcaup.umich.edu/

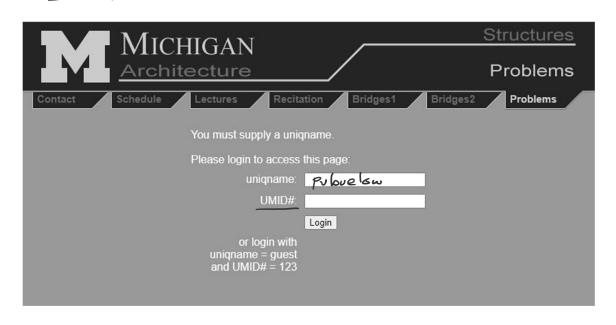


Lectures

University of Michigan, TCAUP Structures I Slide 5 of 11

Recitation Notes & Labs

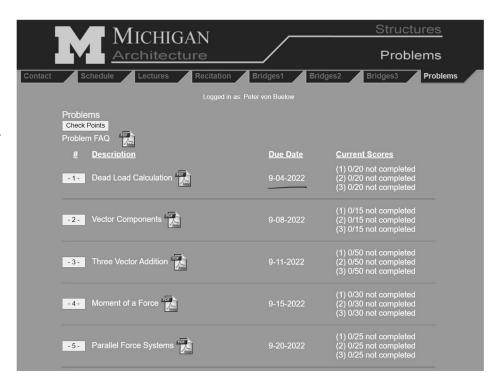
Bridge Project


University of Michigan, TCAUP Structures I Slide 7 of 11

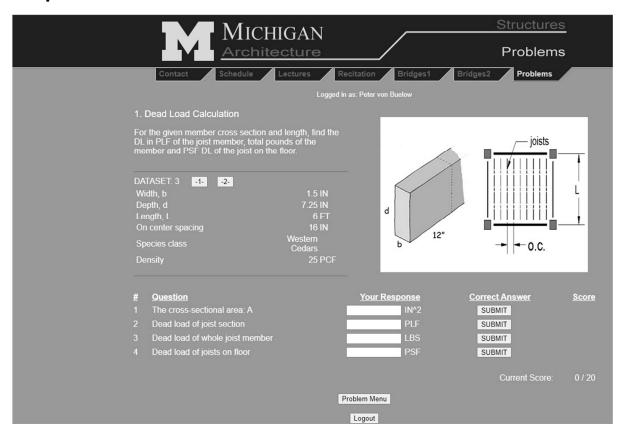
Computer Problems

http://www.structures1.tcaup.umich.edu/problems/problems.php

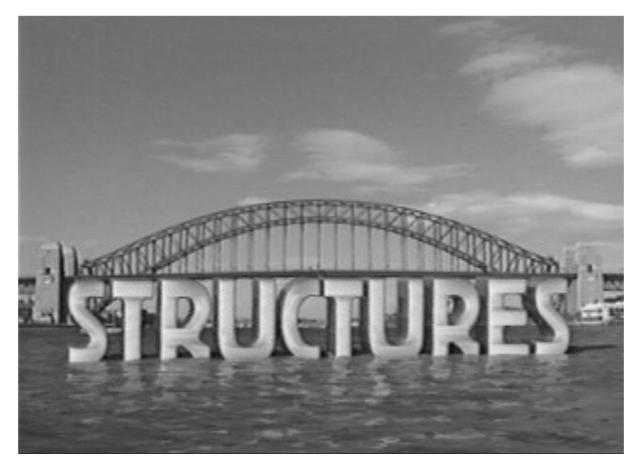
Uniqname


UMID >><u>Number<</u>< (NOT Kerberos)

Computer Problems


Problem Menu

Check Grades
Select Problem
Download Instructions



University of Michigan, TCAUP Structures I Slide 9 of 11

Computer Problems

Structures

University of Michigan, TCAUP Structures I Slide 11 of 11