Architecture 314
Structures I

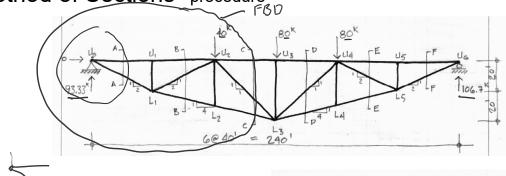
INK DUAL PITC

Trusses by Sections

FINK

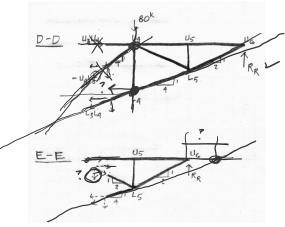
Analysis by sections

Examples

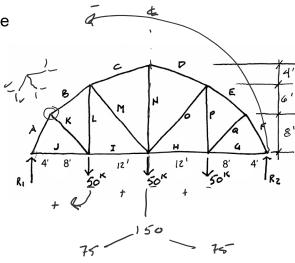


Structures I

University of Michigan, Taubman College


Slide 1 of 16

Method of Sections - procedure



- 2. Cut section through member
- 3. Choose point where all but one of the unknown forces cross and ΣM
- 4. Continue with ΣF_H and ΣF_V

1. Solve the external reactions for the whole truss.

Sum moments about each end. Or using symmetry, divide vertical forces evenly between reactions

REACTIONS:

$$\Sigma M_{RI} = 0 + + + -$$

$$= 50^{6}(12') + 50^{8}(24') + 50^{8}(36') - Rz(48')$$

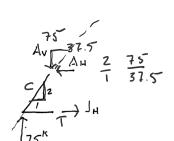
$$R_{z}(48') = 3600^{8-1}$$

$$R_{z} = 75^{8} \cdot J$$

$$\Sigma M_{RZ} = 0$$

= $R_1(48') - 50^{\kappa}(36') - 50^{\kappa}(24') - 50^{\kappa}(12')$
 $R_1(46') = 3600^{\kappa-1}$
 $R_1 = 75^{\kappa}$

Structures I


University of Michigan, Taubman College

Slide 3 of 16

Method of Sections - example

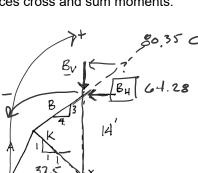
2. Solution proceeds by cutting FBDs of either joints or sections of the truss.

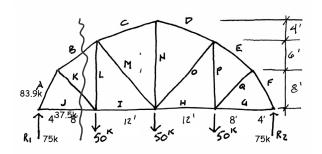
Member forces are shown as horizontal and vertical force components at each cut section.

$$\Sigma F_{v} = 0 = 75 - Av$$

$$A_{v} = 75^{k} \downarrow$$

$$A_{H} = 37.5^{k} \leftarrow$$


$$\Sigma F_{H} = 0 = -37.5^{k} + J_{H}$$


$$J_{H} = 37.5^{k} \rightarrow T$$

2. Solution proceeds by cutting FBDs of either joints or sections of the truss.

Member forces are shown as horizontal and vertical force components at each cut section.

3. Choose a point where all but one of the forces cross and sum moments.

$$\sum M_{x} = 0 = 75^{k} (12') - B_{H} (H')$$

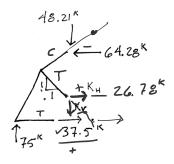
$$B_{H} = 64.28^{k} \leftarrow$$

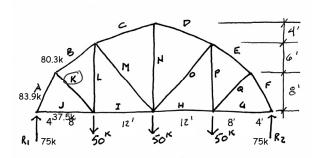
$$\frac{3}{4} \cdot \frac{B_{V}}{64.28}$$

$$B_{V} = 48.21^{k}$$

$$\sqrt{V_{+}^{2} H^{2}} = 8=80.35^{k} C$$

Structures I

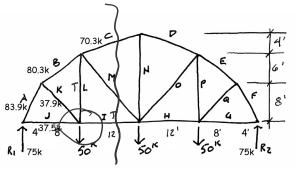

University of Michigan, Taubman College

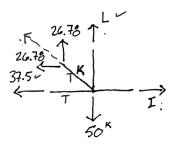

Slide 5 of 16

Method of Sections - example

4. Continue with ΣF_H and ΣF_V

Member forces are shown as horizontal and vertical force components at each cut section.


$$\Sigma F_{H} = 0 = +37.5 - 64.28 \text{ FK}_{H}$$


$$\frac{1}{1} \cdot \frac{26.78}{26.78} \text{ K}_{V} = \frac{26.78}{26.78} \text{ K}_{V}$$

$$K = 37.87 \text{ K}_{V}$$

4. Continue with ΣF_H and ΣF_V

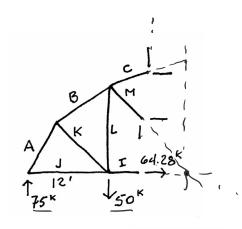
Member forces are shown as horizontal and vertical force components at each cut section.

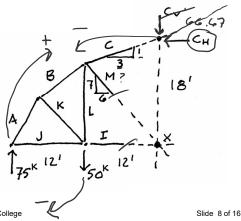
$$\Sigma F_{v} = 0 = 26.78^{k} - 50^{k} + L$$

 $L = 23.22^{k} T$

Structures I

University of Michigan, Taubman College


Slide 7 of 16


Method of Sections - example

2. Solution proceeds by cutting FBDs of either joints or sections of the truss.

Member forces are shown as horizontal and vertical force components at each cut section.

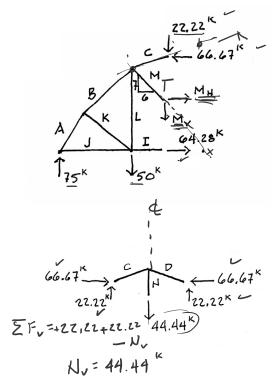
3. Choose a point where all but one of the forces cross and sum moments.

Structures I

University of Michigan, Taubman College

4. Continue with ΣF_{H} and ΣF_{V}

Member forces are shown as horizontal and vertical force components at each cut section.


$$\sum_{V} F_{V} = 0 = 75 - 50 - 27.22 - M_{V}$$

$$M_{V} = 2.78 \text{ K}$$

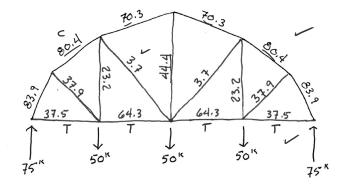
$$M_{H} = 2.38 \text{ K} \rightarrow \frac{7}{6} \cdot \frac{2.72}{4}$$

$$M = 3.66 \text{ K} \quad \sqrt{H^{2} + v^{2}}$$

$$\Sigma F_{i+} = 0 = -66.67 + 2.38 + I$$

 $I = 64.29^{k} T$

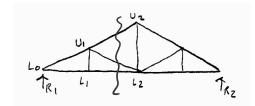
Structures I

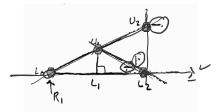

University of Michigan, Taubman College

Slide 9 of 16

Method of Sections - example

5. Make final qualitative check of solution.



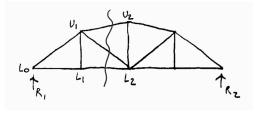


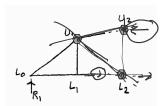
Tips on Sections

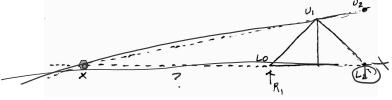
Howe Truss

- 1. Cut a panel with diagonals
- 2. ΣM at L_2 and resolve upper chord force at U_2 . This gives U_1U_2H
- 3. ΣM at U_1 to find L_1L_2
- 4. ΣM at \underline{U}_2 and resolve U_1L_2 at L_2 to find U_1L_2H
- 5. ΣM at L_0 and resolve U_1L_2 at L_2 to find U_1L_2V
- 6. U_1U_2V can now be found by ΣF_V

Structures I

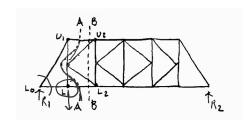

University of Michigan, Taubman College

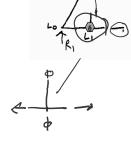

Slide 11 of 16


Tips on Sections

Parker Truss

- 1. Cut a panel with diagonals and Σ M at L₂ to solve U₁U₂H as before.
- 2. ΣM at \underline{U}_1 to find L_1L_2
- 3. ΣM at U_2 and resolve U_1L_2 at L_2 to find U_1L_2H
- 4. Find point x in line with U_1U_2 . ΣM at x and resolve U_1L_2 at L_2 to find U_1L_2V
- 5. U_1U_2V can now be found by ΣF_V






Tips on Sections

K Truss

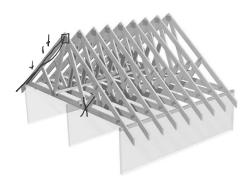
- Make cut A-A to avoid the mid panel joint
- 2. Σ M at U₁ to get L₁L₂
- 3. ΣM at L₁ to get U₁U₂
- 4. The vertical web forces can be solved using joints
- 5. Cut B-B through the diagonals
- ΣM at U₂ and resolve lower diagonal at L₂ to find its H component. The V component can be found by slope triangle. Top and bottom chords are known from steps 2. & 3.
- 7. Repeat step 6 by ΣM at L₂ to find other diagonal.

Structures I

University of Michigan, Taubman College

n, Taubman College Slide 13 of 16

Examples of Trusses

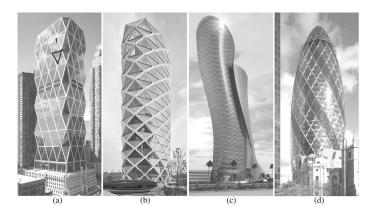


Timber Frame

Structures I

Hamburg Airport - steel tube truss

Light Frame - dimensioned lumber

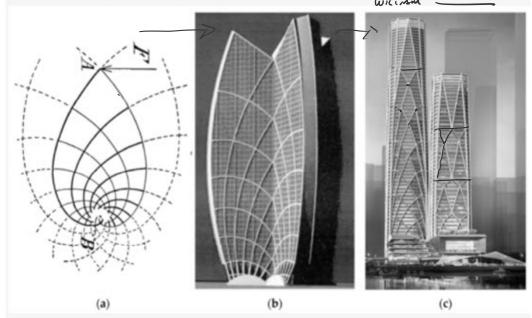


Concrete Truss - Kilburn Rd. Bridge, Calif.

University of Michigan, Taubman College

Trussed Lateral Bracing

Diagrid Towers


John Handcock Tower るらい B75 North Michigan Avenue, Chicago Fazlur Kahn, SOM

- (a) Hearst Tower in NY
- (c) Capital Gate tower in Abu Dhabi
- (b) Poly International Plaza tower in Chaoyang Qu
- (d) 30 St. Mary Axe in London

Structures I University of Michigan, Taubman College Slide 15 of 16

Optimized Principal Stress Grid

Figure 1. (a) Original Michell's minimum frame [9], (b) structural design by Zalewski and Zabłocki [105], and (c) CITIC financial centre in Shenzhen by SOM [105].

