Three-Hinged Arches

- Arches on even supports
- Arches on uneven supports

Three Hinged Arches

Salginatobel Bridge

Arch Reactions

Unlike a beam, where reactions are principally vertical, reactions of an arch need to resist horizontal thrust as well.

If a reaction is "pinned" only two forces are needed to describe it. When both reactions are pinned, there are a total of 4 unknowns, and the structure is indeterminate to the $1^{\text {st }}$ degree.

If a reaction is "fixed", three forces are needed to describe it. When both reactions are fixed, there are a total of six unknown components, and the structure is indeterminate to the $3^{\text {rd }}$ degree.

3-Hinged Arch

The 3-Hinged Arch has a "hinge" at each pinned support plus one more internally. The internal hinge provides one additional statics equation to be written since the moment at C is known ($\mathrm{M}_{\mathrm{C}}=0$). This makes the system statically determinate.

3-HINGED ARCH

The solution of the end reactions can usually be obtained in two steps.

1. finding the vertical reactions by using the diagram of the whole structure
2. summing moments at the internal hinge on an FBD of half of the structure to find the horizontal forces

Characteristics of a 3-Hinged Arch

f. Statically determinate - can be calculated with statics
2. Movement or settling of foundations will not alter member stresses
3 -Small fabrication errors in length do not affect internal stresses
4. Hinge placement can reduce internal stresses

Gallery of the Machines, 1889 Paris Architect: Ferdinand Dutert Engineer: Victor Contamin

3-Hinged Arch analysis

procedure

1. Determine all external loads,

- find resultants of distributed loads (e.g. wind, snow, dead load)

2. Calculate vertical end reactions.

- sum moments at each reaction

3. Draw an FBD of each side of the arch.

- split at the hinge

4. Find the horizontal reactions.

- sum moments at hinge

5. Find internal moments.

- cut additional FBDs (e.g., at the knees)

3-HINGED ARCH

3-Hinged Arch even supports

 example 11. Determine all external loads - find resultants of distributed loads (e.g. wind, snow, dead load)

- Wind causes a pressure load, normal to the surface of the structure.
- Wind can be positive pressure or negative suction and the pressure varies depending on the slope of the surface.
- The pressure is typically expressed in PSF which translates to a PLF load on the members.

In this example with bents @ 10 ft. oc.:

- wind on the wall is $25 \mathrm{PSF}=250 \mathrm{PLF}$
- wind on the roof is $10 \mathrm{PSF}=100 \mathrm{PLF}$

An FBD is drawn for a single bent (arch) of the structure.

The resultants of the uniform PLF loads are
 found in lbs.

3-Hinged Arch even supports example 1

2. Calculate the vertical end reactions.

- sum moments at each reaction.

An FBD is drawn for a single bent of the structure.

The resultants of the uniform PLF loads are found and broken into horizontal and vertical components.

If the reactions are on the same horizontal, summing moments at either reaction will find the vertical component of the opposite reaction.

$$
\begin{aligned}
\sum M e A=0 & =5^{k}\left(10^{\prime}\right)-0.8^{k}\left(24^{\prime}\right)-2.4^{k}\left(12^{\prime}\right)-2.4^{\prime k}\left(36^{\prime}\right)+0.8^{k}\left(24^{\prime}\right)+B_{y}\left(48^{\prime}\right) \\
B y & =1.36^{k} \\
\sum H_{e B}=0 & =5^{k}\left(10^{\prime}\right)+2.4^{k}\left(36^{\prime}\right)+2.4^{k}\left(12^{\prime}\right)-0.8^{\prime \prime}\left(24^{\prime}\right)+0.8^{k}\left(24^{\prime}\right)-A_{y}\left(48^{\prime}\right) \\
A_{y} & =3.44^{k}
\end{aligned}
$$

3-Hinged Arch even supports example 1

3. Draw an FBD of each side of the arch.

- split at the hinge.

4. Find the horizontal reactions

- sum moments at hinge.

$$
\begin{gathered}
+\quad+\quad+\quad-\quad-\quad-\quad+\quad+\quad+\quad H_{c}=0=2.4^{k}\left(12^{\prime}\right)+0.8^{k}\left(4^{\prime}\right)-5^{-k}\left(18^{\prime}\right)-3.44^{k}\left(24^{\prime}\right) A_{x}\left(28^{\prime}\right) \\
A_{x}=5.02^{k} \leftarrow
\end{gathered}
$$

$\sum H_{c}=0=-2.4^{k}\left(12^{\prime}\right)-0.8^{k}\left(4^{\prime}\right)+1.36^{k}\left(24^{\prime}\right)-B_{x}\left(28^{\prime}\right)$

$$
B_{x}=0.02 \mathrm{k} \rightarrow
$$

3-Hinged Arch even supports

 example 15. Find internal moments

- cut additional FBDs (e.g., at the knees).

left wall

right wall

$$
\begin{aligned}
& \sum M_{L}=0+5.02 \mathrm{~K}\left(20^{\prime}\right)-5^{k}\left(10^{\prime}\right)-M_{L} \\
& M_{L} \oplus 50.4^{1-K} \\
& \sum M_{R}= 0=-0.02^{k}\left(20^{\prime}\right)+H_{R} \\
& H_{R}=0.4^{1-K}
\end{aligned}
$$

3-Hinged Arch even supports example 1

Internal moments can be calculated taking appropriate sections and FBD's.
The moment diagram is traditionally drawn on the tension side (the opposite of the convention used for beams).

Tension on the inside is called positive regardless of rotation direction.

Here both knees have a negative moment

3. Solve the two equations for Ah and $A v$
4. Repeat for right side or sum vertical and horizontal forces.

3-Hinged Arch Uneven Supports

 example 21. Sum moments at B to get an equation with A_{H} and A_{V}.

$$
\begin{aligned}
& \sum M \odot B=0+\quad+\quad-\quad- \\
& A_{H}\left(12^{\prime}\right)+A_{V}\left(24^{\prime}\right)-2880^{*}\left(18^{\prime}\right)-2880^{*}\left(6^{\prime}\right) \\
&=-A_{1+}\left(0.5^{\prime}\right)+2880
\end{aligned}
$$

3-Hinged Arch Uneven Supports example 2

2. On left FBD sum moments at hinge to get a second equation for Ah and Av

$$
\sum \text { rect }=0=-A_{H}\left(18^{\prime}\right)+A_{V}\left(12^{\prime}\right)-2880\left(6^{\prime}\right)
$$

$$
A_{V}=\bar{A}_{H}\left(1.5^{\prime}\right\}+1440
$$

combining the two equations gives:

$$
-A_{H}\left(0.5^{\prime}\right)+2880=A_{H}\left(1.5^{\prime}\right)+1440
$$

$$
A_{H}=720
$$

2. Solve the two equations for $A h$ and $A v$

$A_{V}=A_{H}(1.5)+1440$
$\overline{A_{v}}=720(1.5)+1440$
$A_{v}=2520^{*}$

3-Hinged Arch Uneven Supports

example 2

4. Repeat for right side or sum vertical and horizontal forces.

$$
\begin{gathered}
\sum F_{V}=0=2520^{*}-2880^{*}-2880^{*}+B_{V} \\
B_{V}=3240^{*} \\
\Sigma F_{H}=0=720^{*}-B_{H} \\
B_{H}=720^{*}
\end{gathered}
$$

$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow 1 \downarrow \downarrow^{240 \mathrm{PLF}}$

3-Hinged Arch Uneven Supports

 example 25. Cut FBDs at knees to find internal moments

$$
\begin{aligned}
& \text { EMCLEFT KNEE }=0 \\
& +M_{L}-720^{*}\left(12^{\prime}\right)=0 \\
& M_{L}=8640^{\prime}-*
\end{aligned}
$$

EM @ REGT KNEE $=0$

$$
=M_{R}+720^{*}\left(24^{\prime}\right)=0 X
$$

right knee

$$
M_{R}=17280^{\prime-x}
$$

Sign Convention for Frames

Draw the moment on the tension side of the member.

The traditional convention is:

tension outside 5

 tension inside +

Here both knees have a negative moment

Sydney Harbour Bridge

Center Hinge

The Iron Bridge Telford England

