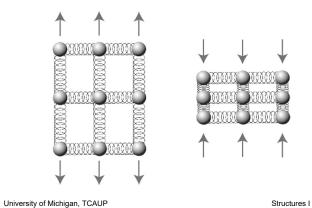
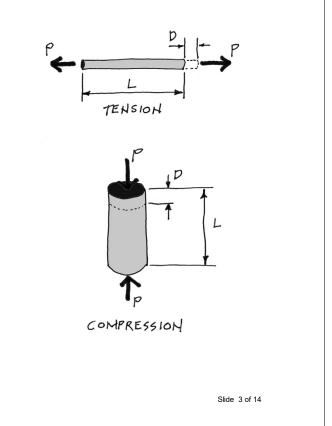

Architecture 314


Structures I


Strain

Strain is the amount of deformation in the material, per unit length.

$$\mathcal{E} = \frac{D}{L} \stackrel{\text{\tiny{IP}}}{\stackrel{\text{\tiny{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}{\stackrel{\text{\scriptstyle{IP}}}}}}}}}}}}}}$$

Deformation occurs either in stretching (tension) or in compressing (compression) but not always at the same rate.

Types of Stress

Compression	$\sigma = \frac{P}{A}$	
• Tension	$\sigma = \frac{P}{A}$	•
• Flexure	$\sigma = \frac{M c}{I}$	
• Shear	$\tau = \frac{P}{A} or \frac{VQ}{Ib}$	
• Torsion	$ au = rac{\mathrm{T} \mathrm{r}}{\mathrm{J}}$	

Stress Analysis

Allowable Stress Design (ASD)

- use applied loads (no F.S. on loads)
- reduce stress by a Factor of Safety F.S.

Load & Resistance Factored Design (LRFD)

Use loads with safety factor γ

 $P_{load} \leq P_{resisting}$

Use factor on nominal strength ϕ

 $f_{actual} \leq F_{allowable}$

 $f_{\underline{actual}} = \frac{P}{\Lambda}$ HATERIAL $F_{allowable} = \underline{F.S.} \cdot f_{yield}$

 $P_{load} = \gamma \cdot P_{applied}$

 $P_{resisting} = \underline{\phi} \cdot P_{material}$

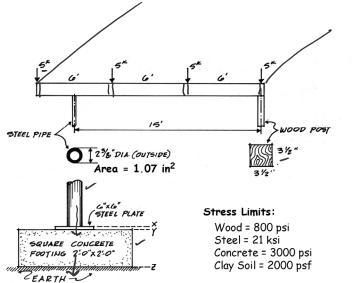
University of Michigan, TCAUP

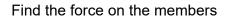
٠

Structures I

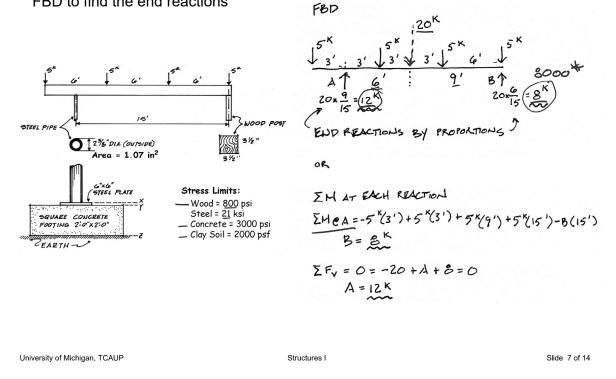
Slide 5 of 14

Stress Calculations - example

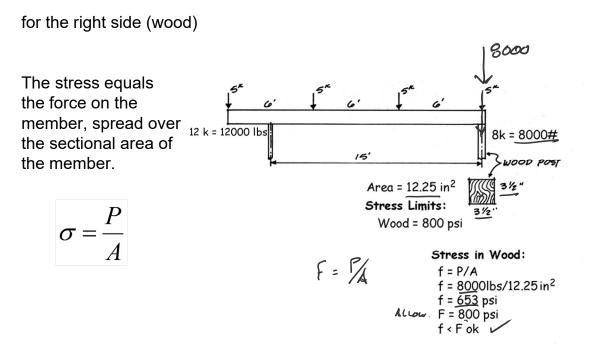

Find the stress in each material:

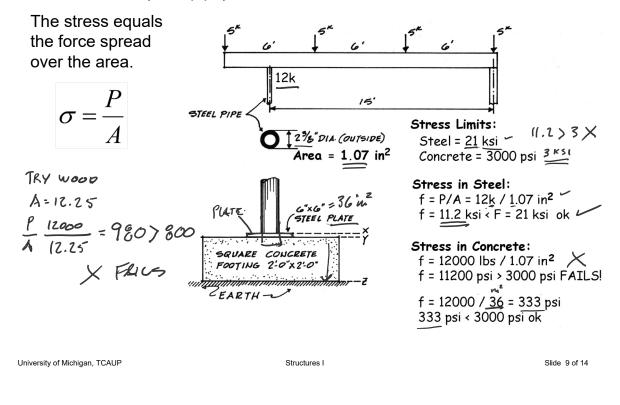

- wood
- steel
- concrete
- soil

Axial Compression

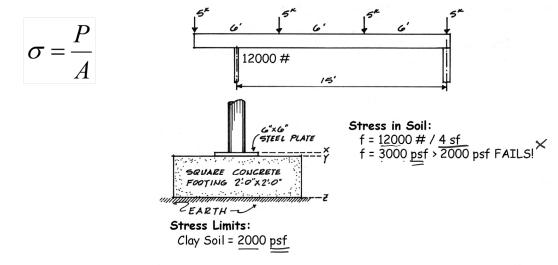

The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$




FBD to find the end reactions

Stress Calculations


for the left side (steel pipe)

Stress Calculations

for the left side (foundation)

The stress equals the force spread over an area.

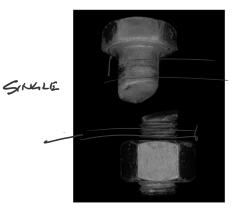
Axial Tension

The stress equals the force spread over an area.

Santiago Calatrava - Serreria Bridge - Valencia 2008

University of Michigan, TCAUP

Structures I

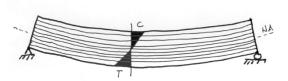

Slide 11 of 14

Stress Calculations

Shear

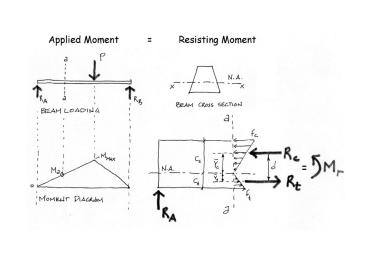
The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$


DOUBLE

 $\sigma = \frac{P}{A}$

University of Michigan, TCAUP


Bending

Flexure Stress

The stress is on the "fibers" or longitudinal layers

$$\sigma = \frac{M c}{\underline{I}}$$

Shear Stress

The stress is between the longitudinal layers.

$$\tau = \frac{\mathrm{VQ}}{\mathrm{Ib}}$$

University of Michigan, TCAUP

Structures I

Slide 13 of 14

Modes of Failure

P/A

Strength

Tension rupture

Compression crushing

Stability

- Column buckling
- Beam lateral torsional buckling

Serviceability

- Beam deflection
- Building story drift
- cracking

