
Parallel Force Resultant

The resultant is the single force that has the same effect as the group of forces.

$$\sum M = \sum (\mathbf{F} \times d) = \mathbf{R} \times \overline{d}$$

$$\sum \mathbf{F} = \mathbf{R}$$

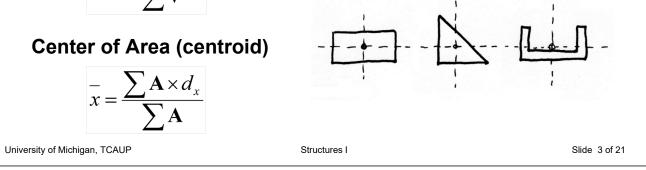
$$\overline{d} = \frac{\sum (\mathbf{F} \times d)}{\sum \mathbf{F}}$$

Centers

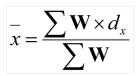
The point about which a body may be balanced.

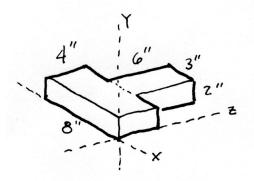
This is the point of application of the resultant weight.

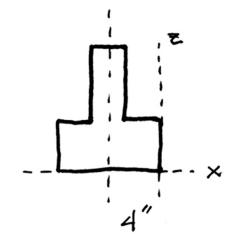
Center of Gravity

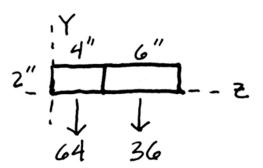


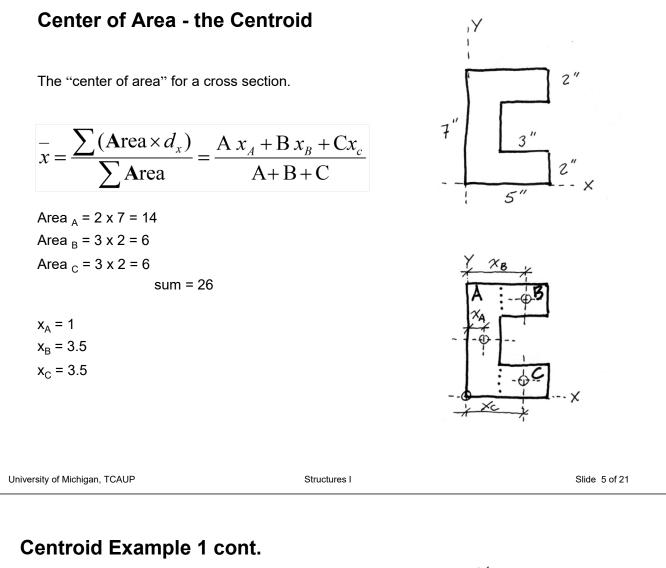
Center of Volume

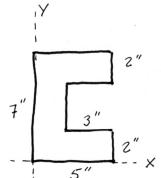

Tyrrell Photographic Collection, Powerhouse Museum

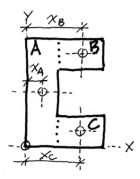


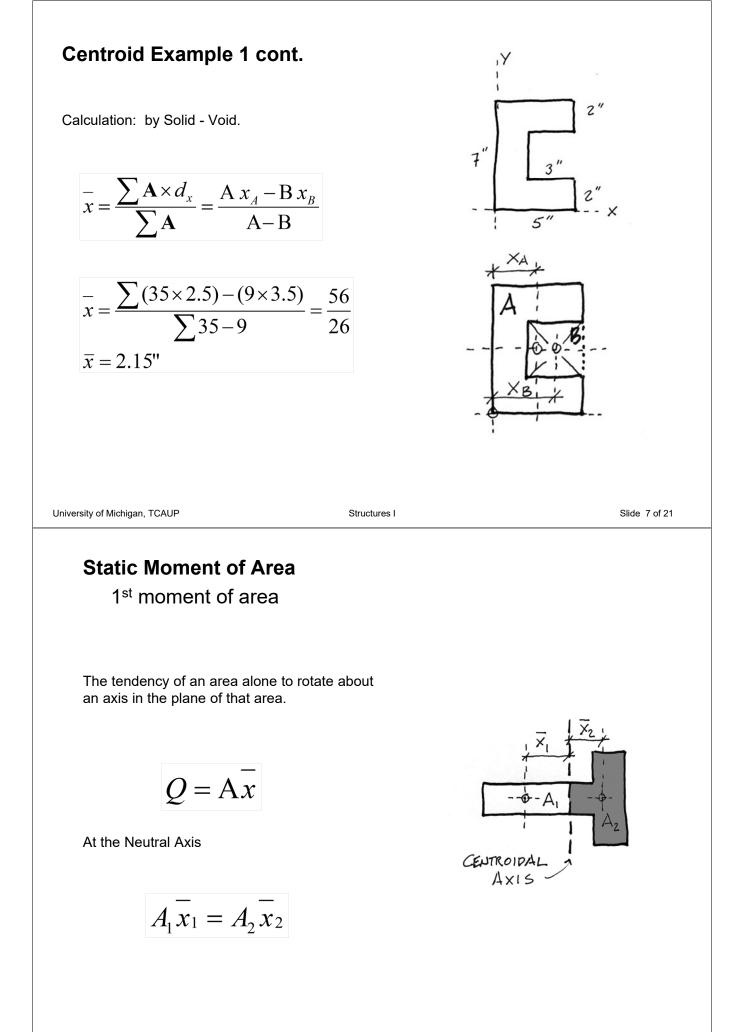

Center of Gravity (or Volume)


The Center of Gravity is located at the point defined by:



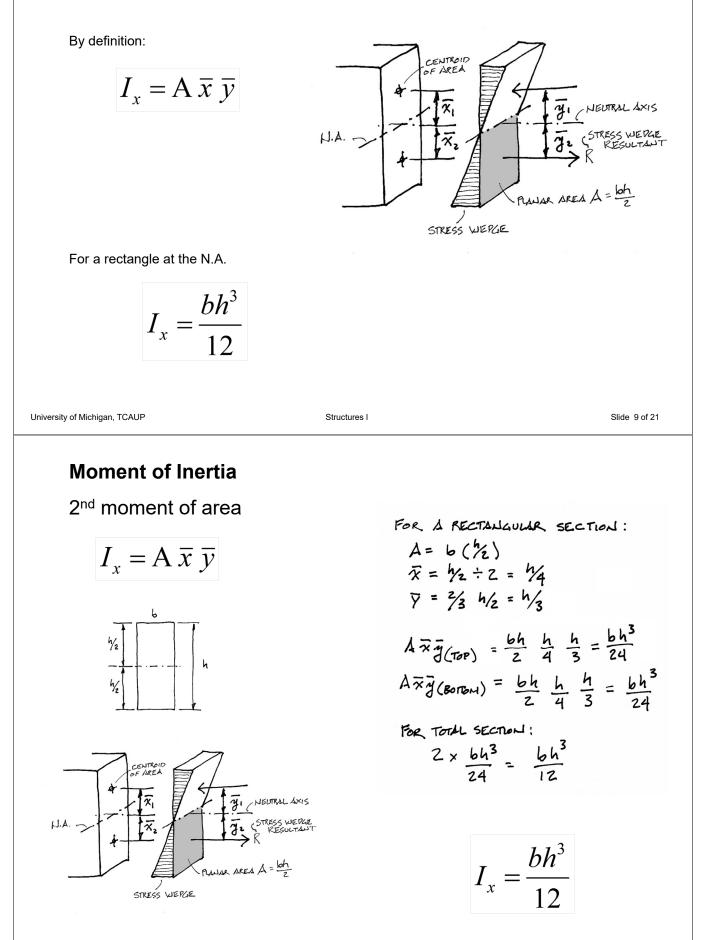


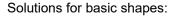


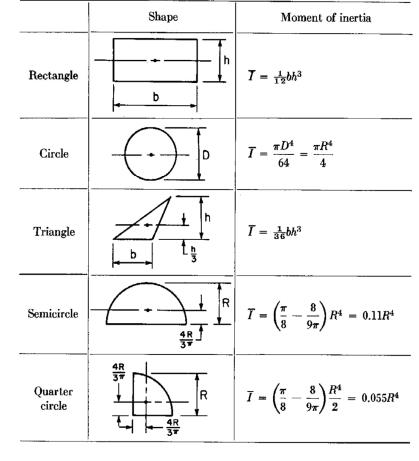

Area $_{A} = 2 \ge 7 = 14$ $x_{A} = 1$ Area $_{B} = 3 \ge 2 = 6$ $x_{B} = 3.5$ Area $_{C} = 3 \ge 2 = 6$ $x_{C} = 3.5$ sum = 26

Calculation.

$$\overline{x} = \frac{\sum \text{Area} \times d_x}{\sum \text{Area}} = \frac{\text{A } x_A + \text{B } x_B + \text{C} x_c}{\text{A} + \text{B} + \text{C}}$$
$$\overline{x} = \frac{(14 \times 1) + (6 \times 3.5) + (6 \times 3.5)}{14 + 6 + 6}$$
$$\overline{x} = \frac{56}{26} = 2.15"$$






Moment of Inertia

2nd moment of area

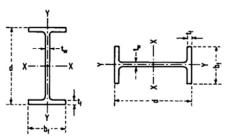
University of Michigan, TCAUP

Structures I

Slide 11 of 21

Moment of Inertia

Solutions for basic shapes:


- Single Shapes
- Combination Shapes

COMBINATION SECTIONS S shapes and channels Properties of sections											x	
	Total	Tel	AXIS X-X					AXIS Y-Y				
Beam	Channel	Wt. per Ft	Total Area	1	$S_1 = I/y_1$	$S_2 = I/y_2$	r	y 1	I	s	r	r,
		Lb.	In. ²	ln.⁴	In. ³	In. ³	In.	In.	In.4	In. ³	In.	In.
S 10× 25.4 × 25.4	C 8×11.5 C 10×15.3	36.9 40.7	10.84 11.95	176 186	27.2 27.6	46.6 52.9	4.02 3.94	6.45 6.73	39.4 74.2	9.85 14.8	1.91 2.49	2.44 3.16
S 12× 31.8 × 31.8 × 40.8	C 8×11.5 C 10×15.3 C 10×15.3	43.3 47.1 56.1	12.73 13.84 16.49	299 316 377	39.8 40.4 50.1	63.2 71.4 80.0	4.84 4.78 4.78	7.50 7.82 7.53	42.0 76.8 81.0	10.5 15.4 16.2	1.82 2.36 2.22	2.38 3.06 2.94

WIDE FLANGE SHAPES Theoretical Dimensions and Properties for Designing Axis X-X Axis Y-Y Flange Web Thick-ness Dept Area of Sectio Numbe of Thick ۲ Foot s, ectio Secti Widt ness ł, S, ٢x I, A d in.2 in. in. in. in. in.4 ia 2 in. in.4 in,* in ìn. lh 78.8 3.26 70.9 3.24 63.5 3.21 W27 x 178 52.3 27.8114.0851.1900.72527.5914.0201.0800.660 3.72 3.70 6990 502 555 11.6 497 443 47.4 6280 455 411 161 11.5 42.9 27.38 13.965 0.975 0.605 146 5630 11.4 3.68 33.5 27.29 10.070 0.930 0.570 30.0 27.09 10.015 0.830 0.515 27.7 26.92 9.990 0.745 0.490 299 267 243 213 159 139 124 31.5 2.18 27.8 2.15 24.8 2.12 21.2 2.07 2.58 2.56 2.53 W27 x 114 4090 11.0 11.0 10.9 3620 102 94 84 3270 24.8 26.71 9.960 0.640 0.460 2850 10.7 106 2.49

Section Properties

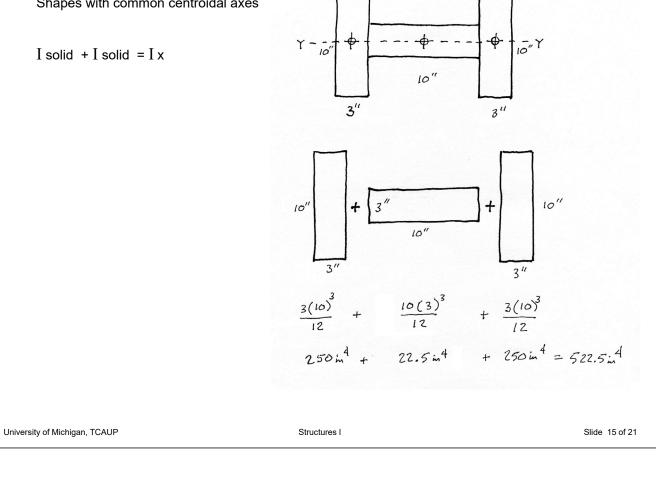
WIDE FLANGE SHAPES

				Fla	nge			Axis X-X		Axis Y-Y				
Section Number		of of Section Section	of Section Width	Thick- Thick ness ness	Web Thick- ness t	(- 5 1 _x	ł _x S _x	Sx rx	ly .	s _y	ry	۲		
	lb	in.²	in.			· "	in.4 i	in.ª	in.ª in.	in.4	in.³	in.	in.	
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72	
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70	
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68	
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58	
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56	
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53	
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49	

Theoretical Dimensions and Properties for Designing

Section Properties

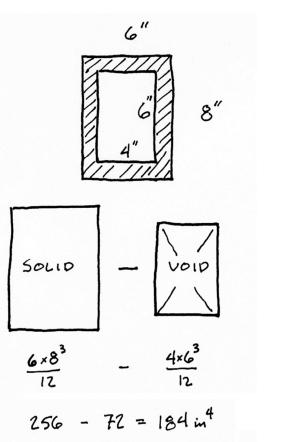
PROPERTIES OF SAWN LUMBER SECTIONS


×

Rectangular :

A = bd	Nominal Size $b \times d$	Actual Size b \times d	Area in. ²	I_x in. ⁴	S_x in. ³
$I = db^{3}/12$	1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
$\mathbf{C} = \mathbf{I}/\mathbf{c}$	1 × 6	$" \times 5\frac{1}{2}$	4.13	10.40	3.78
S = I/c	1×8	$" \times 7\frac{1}{4}$	5.44	23.82	6.57
1/0	1×10	$'' \times 9^{1}_{4}$	6.94	49.47	10.70
c = d/2	1 × 12	$" \times 11\frac{1}{4}$	8.44	88.99	15.83
	2×4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
	2×6	$" \times 5\frac{1}{2}$	8.25	20.80	7.56
	2×8	$'' \times 7\frac{1}{4}$	10.88	47.64	13.14
	2×10	$" \times 9\frac{1}{4}$	13.88	98.93	21.39
	2×12	" $\times 11\frac{1}{4}$	16.88	177.98	31.64
	3 × 4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
	3×6	$'' \times 5\frac{1}{2}$	13.75	34.66	12.60
	3×8	$'' \times 7\frac{1}{4}$	18.13	79.39	21.90
	3×10	$'' \times 9\frac{1}{4}$	23.13	164.89	35.65
	3 × 12	$'' \times 11\frac{1}{4}$	28.13	296.63	52.73
	4×4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
	4×6	$'' \times 5\frac{1}{2}$	19.25	48.53	17.65
	4×8	$'' \times 7\frac{1}{4}$	25.38	111.15	30.66
	4×10	$" \times 9\frac{1}{4}$	32.38	230.84	49.91
	4×12	$'' \times 11\frac{1}{4}$	39.38	415.28	73.83

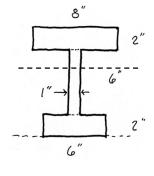
Moment of Inertia


Shapes with common centroidal axes

Moment of Inertia

Shapes with common centroidal axes

I solid - I void = I x



Moment of Inertia

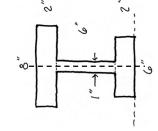
The Transfer Equation or Parallel Axis Theorem, taken about the x-x axis:

$$\overline{y} = \frac{\sum Ay}{\sum A}$$

$$I_x = \sum \bar{I}_x + \sum Ad^2$$

y-bar = 186/34 = 5.48"

Shape	A	у 	Ay	\overline{I}_x	<i>d</i> , in.	Ad^2
2"	(2)(8) = 16	9	144	$(\frac{1}{12})(8)(2)^3 = 5.3$	3.52	$(16)(3.52)^2 = 198$
6"	(1)(6) = 6	5	30	$(\frac{1}{12})(1)(6)^3 = 18$	0.48	$6(0.48)^2 = 1.4$
2" 6"	(2)(6) = 12	1	12	$(\frac{1}{12})(6)(2)^3 = 4$	4.48	$12(4.48)^2 = 240$
	$\sum A = 34$	$\sum Ay$	= 186	$\sum \overline{I_x} = 27.3$		$\sum Ad^2 = 439.4$
	y-bar = 1	86/34 =	5.48"	x = 27	.3+439	.4 = 466.7 in ⁴
rsity of Michigan, TCAUP			Struc	ctures I		Slide 17


ly = 121.8+0 = 121.8

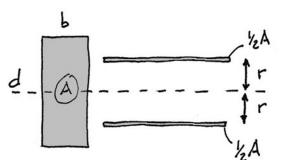
Moment of Inertia

The Transfer Equation or Parallel Axis Theorem:

$$I_y = \sum \bar{I}_y + \sum Ad^2$$

Taken about the y-y axis:

Shape	A	\overline{I}_Y	d	Ad^2
2" []	16	$(\frac{1}{12})(2)(8)^3 = 85.3$	0	0
6"	6	$\left(\frac{1}{12}\right)(6)(1)^3 = 0.5$	0	0
2"	12	$\left(\frac{1}{12}\right)(2)(6)^3 = 36.0$	0	0
		$\sum \overline{I}_Y = 121.8$		0


SUMMARY:

 $l_x = 466.7 \text{ in}^4$ $l_y = 121.8 \text{ in}^4$

Radius of Gyration

The distance from the centroid where all area could be collected to yield an equivalent Moment of Inertia.

$$I = A r^{2}$$
$$r = \sqrt{\frac{I}{A}}$$

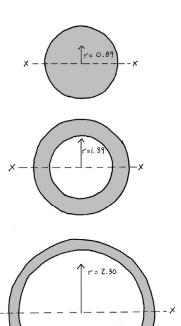
r = 0.289 d

for a rectangle about the N.A

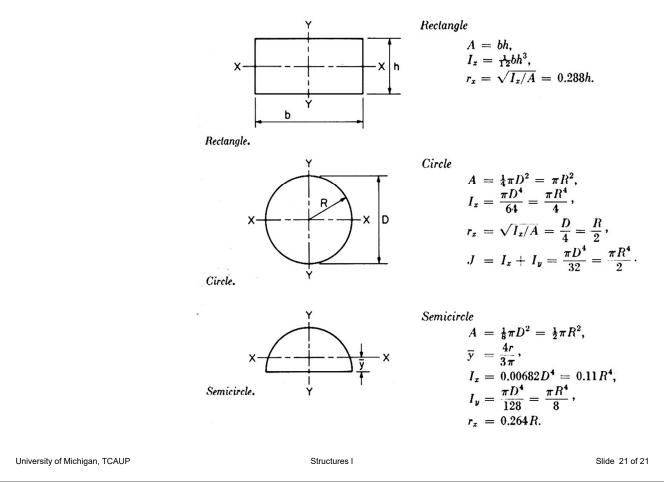
University of Michigan, TCAUP

Structures I

Slide 19 of 21


Radius of Gyration

The larger the radius of gyration, the more resistant the section is to buckling.


Area below is a constant, while diameter increases.

OD	ID	t	Α	r
3.57	0.00	1.78	10.00	0.89
3.71	1.00	1.35	10.00	0.96
4.09	2.00	1.05	10.00	1.14
4.66	3.00	0.83	10.00	1.39
5.36	4.00	0.68	10.00	1.67
6.14	5.00	0.57	10.00	1.98
6.98	6.00	0.49	10.00	2.30
7.86	7.00	0.43	10.00	2.63
8.76	8.00	0.38	10.00	2.97
9.68	9.00	0.34	10.00	3.30
10.62	10.00	0.31	10.00	3.65

$$Pcr = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

