
ARCHITECTURE 314 STRUCTURES I

Cross-Sectional Properties of Structural Members

Resultant of Parallel Forces
Center of Gravity
Centroid of Area
First Moment of Area
Second Moment of Area
(Moment of Inertia)
Radius of Gyration

University of Michigan, TCAUP Structures I Slide 1 of 21

Parallel Force Resultant

The resultant is the single force that has the same effect as the group of forces.

$$\sum M = \sum (\mathbf{F} \times d) = \mathbf{R} \times \overline{d}$$

Centers

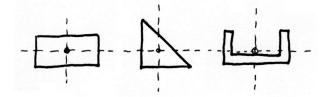
The point about which a body may be balanced.

This is the point of application of the resultant weight.

Center of Gravity

$$\overline{x} = \frac{\sum \mathbf{W} \times d_x}{\sum \mathbf{W}}$$

Center of Volume


$$\overline{x} = \frac{\sum \mathbf{V} \times d_x}{\sum \mathbf{V}}$$

Center of Area (centroid)

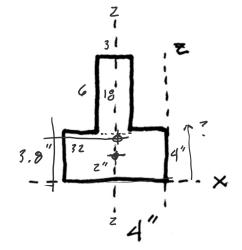
$$\overline{x} = \frac{\sum \mathbf{A} \times d_x}{\sum \mathbf{A}} \checkmark$$

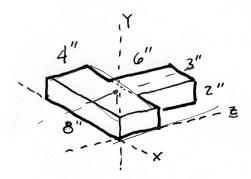
1325. The BOTTLE ROSE, COOMMARINGS.

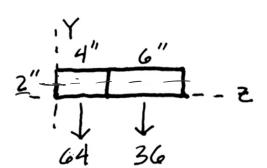
Tyrrell Photographic Collection, Powerhouse Museum

University of Michigan, TCAUP

Structures I


Slide 3 of 21


Center of Gravity (or Volume)


The Center of Gravity is located at the point defined by:

VGLUME

$$\frac{1}{x} = \frac{\sum \mathbf{W} \times d_x}{\sum \mathbf{W}} = \frac{(64 \times 2) + (36 \times 7)}{64 + 36} = \frac{380}{100}$$

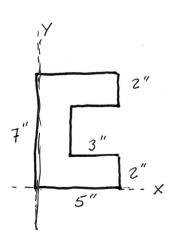
Center of Area - the Centroid

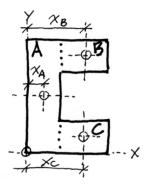
The "center of area" for a cross section.

$$\frac{\overline{x}}{\sum \mathbf{A}rea} = \frac{\sum (\mathbf{A}rea \times d_x)}{\sum \mathbf{A}rea} = \frac{\mathbf{A} x_A + \mathbf{B} x_B + \mathbf{C}x_c}{\mathbf{A} + \mathbf{B} + \mathbf{C}}$$

Area
$$_{A}$$
 = 2 x 7 = 14

Area
$$_{\rm B}$$
 = 3 x 2 = 6


Area
$$_{\rm C}$$
 = 3 x 2 = 6


$$sum = 26$$

$$x_{A} = 1$$

$$x_B = 3.5$$

$$x_{c} = 3.5$$

University of Michigan, TCAUP

Structures I

Slide 5 of 21

Centroid Example 1 cont.

Area
$$_{A} = 2 \times 7 = 14$$
 $x_{A} = 1$.
Area $_{B} = 3 \times 2 = 6$ $x_{B} = 3.5$

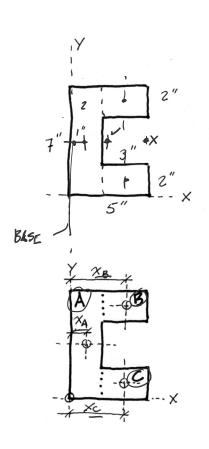
$$y_{.} = 1$$

Area
$$_{\rm B} = 3 \times 2 = 6$$

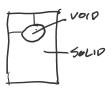
$$x_{\rm p} = 3.5^{"}$$

Area
$$_{C} = 3 \times 2 = 6$$
 $x_{C} = 3.5$

$$x_{c} = 3.5^{\circ}$$


$$sum = 26$$

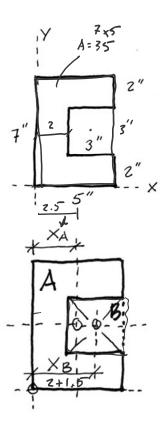
Calculation.


$$\overline{x} = \frac{\sum \mathbf{A} \operatorname{rea} \times d_x}{\sum \mathbf{A} \operatorname{rea}} = \frac{\mathbf{A} x_A + \mathbf{B} x_B + \mathbf{C} x_c}{\mathbf{A} + \mathbf{B} + \mathbf{C}}$$

$$\overline{x} = \frac{(14 \times 1) + (6 \times 3.5) + (6 \times 3.5)}{14 + 6 + 6}$$

$$\bar{x} = \frac{56}{26} = 2.15$$
"

Centroid Example 1 cont.



Calculation: by Solid - Void.

$$\overline{x} = \frac{\sum \mathbf{A} \times d_x}{\sum \mathbf{A}} = \frac{\mathbf{A} x_A - \mathbf{B} x_B}{\mathbf{A} - \mathbf{B}}$$

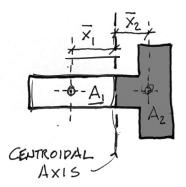
$$\bar{x} = \frac{\sum (35 \times 2.5) - (9 \times 3.5)}{\sum 35 - 9} = \frac{56}{26}$$

$$\bar{x} = 2.15$$

University of Michigan, TCAUP

Structures I

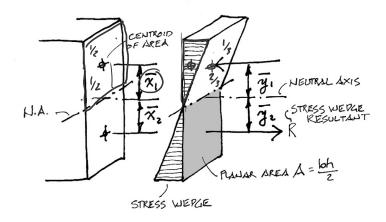
Slide 7 of 21


Static Moment of Area

The tendency of an area alone to rotate about an axis in the plane of that area.

$$Q = \underline{Ax}$$

At the Neutral Axis


$$A_1 \overline{x}_1 = A_2 \overline{x}_2$$

2nd moment of area

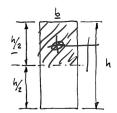
By definition:

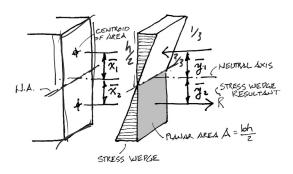
$$I_x = \underline{\mathbf{A}} \, \overline{x} \, \underline{\overline{y}}$$

For a rectangle at the N.A.

$$I_x = \frac{bh^3}{12} \nearrow$$

University of Michigan, TCAUP


Structures I


Slide 9 of 21

Moment of Inertia

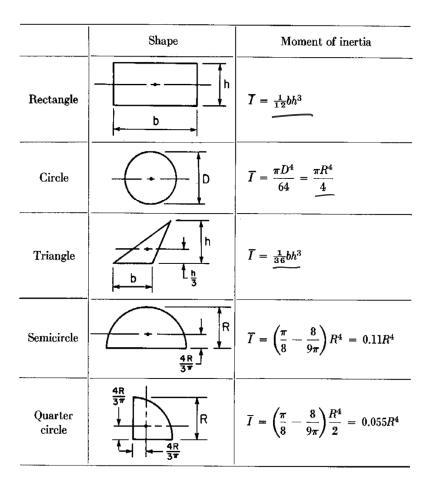
2nd moment of area

$$I_{x} = A \, \overline{x} \, \overline{y}$$

FOR A RECTANGULAR SECTION:

$$A \times \bar{g}(ToP) = \frac{6h}{2} \frac{h}{4} \frac{h}{3} = \frac{6h^3}{24}$$

$$A \times \bar{g}(BOTEM) = \frac{6h}{2} \frac{h}{4} \frac{h}{3} = \frac{6h^3}{24}$$


FOR TOTAL SECTION:

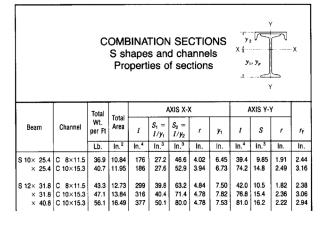
$$\frac{2 \times 6h^3}{24} = \frac{6h^3}{12}$$

RECTENGUE

$$I_x = \frac{bh^3}{12}$$

Solutions for basic shapes:

University of Michigan, TCAUP


Structures I

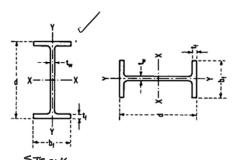
Slide 11 of 21

Moment of Inertia

Solutions for basic shapes:

- Single Shapes
- · Combination Shapes

WIDE FLANGE SHAPES



Theoretical Dimensions and Properties for Designing

Section Number				Flange			[Axis X-X		Axis Y-Y			
		of	Depth of Section d		Thick- ness	Web Thick- ness t _w	Ţ	S _x	ι ^x	I _y s,		Гy	r _T
	lb	in.²	in.	in.	in.	in.	in.4	ín.²	in.	in.4	in.³	in.	ìn.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

Section Properties

WIDE FLANGE SHAPES

Theoretical Dimensions and Properties for Designing

U	ES	K
---	----	---

				Fla	nge			Axis X->	(Axis Y-Y		
Section Number	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	1 _x	S _x	ι ^x	ly	Sy	г _у	rτ
PCF.		Α	d	b _f	t _f	t _w							
ICF	(b)	in.²	in.	in.	in.	in.	in.4	in.³	in.	in.⁴	in.³	in.	in.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
deep	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
- CCP	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

University of Michigan, TCAUP Structures I Slide 13 of 21

Section Properties

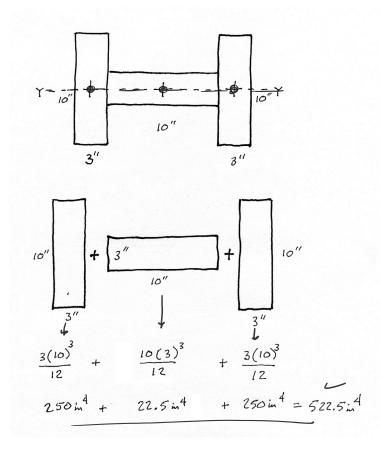
PROPERTIES OF SAWN LUMBER SECTIONS

x L x

Rectangular:

$$A = bd$$

$$I = db^3/12$$

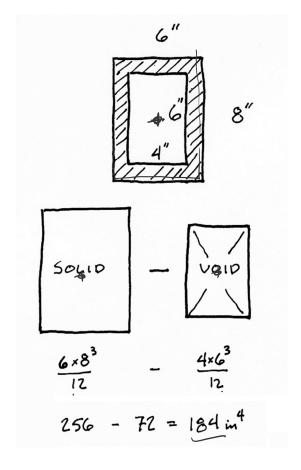

c = d/2 (maximum)

$$f_b = \frac{Mc}{T} = \frac{M}{S}$$

	4			1
Nominal Size b × d	Actual Size b × d	Area in.²	$\frac{I_x}{\text{in.}^4}$	$\frac{S_x}{\text{in.}^3}$
1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
1×6	" \times $5\frac{1}{2}$	4.13	10.40	3.78
1×8	" \times $7\frac{1}{4}$	5.44	23.82	6.57
1×10	" $\times 9\frac{1}{4}$	6.94	49.47	10.70
1 × 12	" $\times 11\frac{1}{4}$	8.44	88.99	15.83
2×4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
2×6	$" \times 5\frac{1}{2}$	8.25	20.80	7.56
2×8	" \times $7\frac{1}{4}$	10.88	47.64	13.14
2×10	" \times $9\frac{1}{4}$	13.88	98.93	21.39
2×12	" $\times 11\frac{1}{4}$	16.88	177.98	31.64
3 × 4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
3×6	" \times $5\frac{1}{2}$	13.75	34.66	12.60
3×8	" $\times 7\frac{1}{4}$	18.13	79.39	21.90
3×10	" $\times 9^{1}_{4}$	23.13	164.89	35.65
3 × 12	$^{\prime\prime}$ × 11 $\frac{1}{4}$	28.13	296.63	52.73
4 × 4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
4×6	" \times $5\frac{1}{2}$	19.25	48.53	17.65
4×8	" \times $7\frac{1}{4}$	25.38	111.15	30.66
4×10	" \times 9 ¹ / ₄	32.38	230.84	49.91
4 × 12	" $\times 11\frac{1}{4}$	39.38	415.28	73.83

Shapes with common centroidal axes

$$I \text{ solid } + I \text{ solid } = I x$$

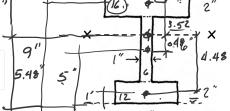


University of Michigan, TCAUP Structures I Slide 15 of 21

Moment of Inertia

Shapes with common centroidal axes

$$I \text{ solid } - I \text{ void } = I x$$



The Transfer Equation or Parallel Axis Theorem,

taken about the x-x axis:

$$\frac{y}{y} = \frac{\sum Ay}{\sum A}$$

$$I_x = \sum \underline{I}_x + \sum Ad^2$$

|x = 27.3+439.4 = 466.7 in⁴

y-bar = 186/34 = 5.48"

x = 27.3 + 439.4 = 466.7	7 in ⁴

Shape	A	y	Ay	\overline{I}_x	d, in.	$A\underline{d}^2$
2"	(2)(8) = 16	9	144	$\frac{\frac{1}{2}}{(\frac{1}{12})(8)(2)^3} = \underline{5.3}$	3.52	$(16)(3.52)^2 = 198$
e[]	(1)(6) = 6	5	30	$(\frac{1}{12})(1)(6)^3 = 18$	0.48	$6(0.48)^2 = 1.4$
2" 6"	(2)(6) = 12	1	12	$(\frac{1}{12})(6)(2)^3 = 4$	4.48	$12(4.48)^2 = \underline{240}$
	$\sum A = \underline{34}$	$\sum Ay$	= 186	$\sum \overline{I_x} = 27.3$		$\sum Ad^2 = 439.4$
	v-har = 1	86/34 =	5 48"	ly = 27	3+/30	$A = 466.7 \text{ in}^4$

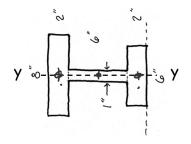
y-bar =
$$186/34 = 5.48$$

$$1x = 27.3 + 439.4 = 466.7 \text{ in}^4$$

University of Michigan, TCAUP

Structures I

Slide 17 of 21


Moment of Inertia

The Transfer Equation or Parallel Axis Theorem:

$$I_y = \sum_{l} \bar{I}_y + \sum_{l} Ad^2$$

Taken about the y-y axis:

$$y = 121.8 + 0 = 121.8$$

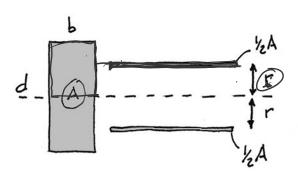
Shape	A	\overline{I}_{Y}	d	Ad^2
2"	16	$(\frac{1}{12})(2)(8)^3 = 85.3$	0	0
e.[]	6	$(\frac{1}{12})(6)(1)^3 = 0.5$	0	0
2"	12	$(\frac{1}{12})(2)(6)^3 = 36.0$	0	0
		$\Sigma \overline{I}_Y = 121.8$		0

SUMMARY:

$$l_x = 466.7 \text{ in}^4$$

$$l_{y} = 121.8 \text{ in}^{4}$$

Radius of Gyration


The distance from the centroid where all area could be collected to yield an equivalent Moment of Inertia.

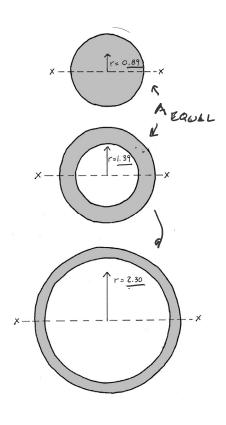
$$I = A r^2$$

$$r = \sqrt{\frac{I}{A}}$$

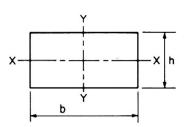
r = 0.289 d

for a rectangle about the N.A

University of Michigan, TCAUP Structures I Slide 19 of 21

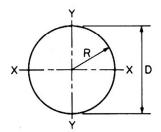

Radius of Gyration

The larger the radius of gyration, the more resistant the section is to buckling.


Area below is a constant, while diameter increases.

OD	ID	t	Α	r
3.57	0.00	1.78	10.00	0.89
3.71	1.00	1.35	10.00	0.96
4.09	2.00	1.05	10.00	1.14
4.66	3.00	0.83	10.00	1.39
5.36	4.00	0.68	10.00	1.67
6.14	5.00	0.57	10.00	1.98
6.98	6.00	0.49	10.00	2.30
7.86	7.00	0.43	10.00	2.63
8.76	8.00	0.38	10.00	2.97
9.68	9.00	0.34	10.00	3.30
10.62	10.00	0.31	10.00	3.65

$$Pcr = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$


Section Formulas

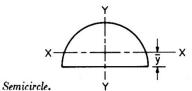
Rectangle

$$A = bh,$$

 $I_x = \frac{1}{12}bh^3,$
 $r_x = \sqrt{I_x/A} = 0.288h.$

Rectangle.

Circle


$$A = \frac{1}{4}\pi D^{2} = \pi R^{2},$$

$$I_{x} = \frac{\pi D^{4}}{64} = \frac{\pi R^{4}}{4},$$

$$r_{x} = \sqrt{I_{x}/A} = \frac{D}{4} = \frac{R}{2},$$

$$J = I_{x} + I_{y} = \frac{\pi D^{4}}{32} = \frac{\pi R^{4}}{2}.$$

Circle.

Semicircle

cole
$$A = \frac{1}{8}\pi D^{2} = \frac{1}{2}\pi R^{2},$$

$$\overline{y} = \frac{4r}{3\pi},$$

$$I_{x} = 0.00682D^{4} = 0.11R^{4},$$

$$I_{y} = \frac{\pi D^{4}}{128} = \frac{\pi R^{4}}{8},$$

$$r_{x} = 0.264R.$$

University of Michigan, TCAUP