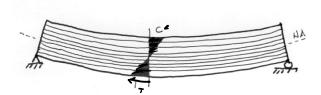
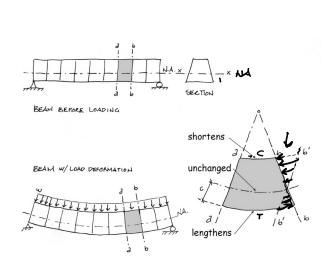

Bending Stresses in Beams


- Elastic Bending
- Stress Equation
- Section Modulus
- Flexure Capacity Analysis
- Flexure Beam Design

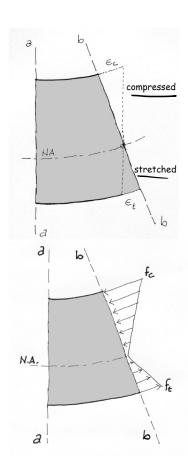
University of Michigan, TCAUP Structures I Slide 1 0f 20

Elastic Bending


Flexure results in internal tension and compression forces, the resultants of which form a couple which resists the applied moment.

In the initial unloaded state, all transverse sections are parallel.

The application of load causes the member to bend in a curve. This means the initial parallel plane sections, while remaining plane, now follow the radii of the curves.


Notice that by the geometry of the curved member the top edge is shortened and the bottom edge is lengthened. Only the neutral axis remains its original length.

Elastic Bending

The change in lengths, top and bottom, results in the material straining. For a simple span with downward loading, the top is compressed and the bottom stretched. The change in length is linear and proportional to the distance from the Neutral Axis.

The material strains result in corresponding stresses. By **Hooke's Law**, these stresses are proportional to the strains which are proportional to the change in length of the radial arcs of the beam "fibers". This assumes that the Modulus of Elasticity is constant across the section.

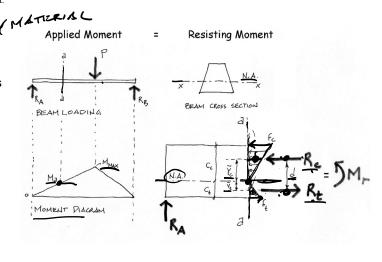
University of Michigan, TCAUP Structures I Slide 3 0f 20

Elastic Bending

The applied moment at any point on the beam is equal to the resisting moment which is formed by the internal force couple, $R_{\rm c}$ and $R_{\rm t}$.

$$M_{applied} = M_{resisting}$$

Balance of the external and internal moments

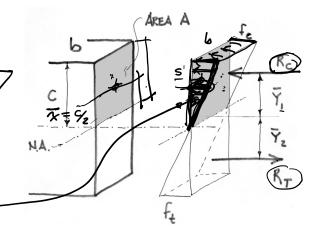

$$R_{comp.} = R_{tens.}$$

Balance of the internal force couple

$$M_r = \underbrace{R_c \cdot y_c + R_t \cdot y_t}_{r} \cdot M_r = R_c \cdot d \checkmark$$

$$M_r = R_t \cdot d \checkmark$$

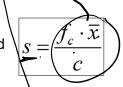
Expressions of the internal resisting moment

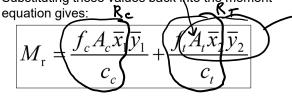


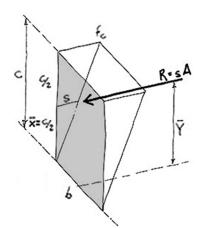
Elastic Bending

The internal moment, M_r , can be expressed as the result of the couple R_c and R_t

$$M_{\underline{r}} = R_c \cdot \overline{y}_1 + R_t \cdot \overline{y}_2$$


In turn, the forces R_c and R_t , can be written as the resultants of the "stress volumes" acting through the centroids of those volumes. The average unit stress, s = fc/2 and so the resultant R is the area times s:



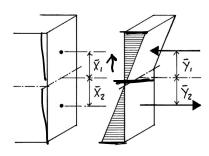

Using similar triangles, s can be expressed as:

Substituting these values back into the moment

University of Michigan, TCAUP

Structures I

Slide 5 0f 20


Elastic Bending

By definition:

$$I_{x} = A\overline{x}\overline{y}$$

And for homogeneous materials with $E_c=E_t$

$$M_r = \frac{f I_1}{c} + \frac{f I_2}{c} = \frac{f}{c} \left(\underline{I_1 + I_2} \right)$$

Or using the ${\rm I}\$ for the whole section:

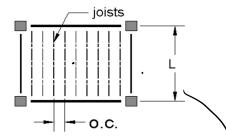
$$M_r = \frac{f I_k}{c}$$

And so,

STRESS
$$f = \frac{M c}{I}$$

The Section

Modulus is:
$$M = fS$$


$$S = \frac{I}{C_{\text{MAX}}} = \frac{M}{6}$$
And:

With c = h/2 at extreme fibers of a symmetric section.

$$f = \frac{M}{S_{\mathbf{x}}}$$

So, at extreme fibers:

Beam Analysis

$\underbrace{\text{Allowable Capacity (ASD):}}_{\text{$M=F_bS$}}$

for steel: $F_b = (0.66 \text{ to } 0.6) F_y \text{ ksi}$ **for wood:** $F_b = 1000 \text{ to } 600 \text{ psi}$

Applied Load:

$$M = \frac{wl^2}{8}$$
 (uniform load)

Pass
$$M = F_b S$$

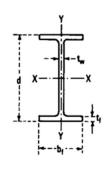
$$M = \frac{wl^2}{8}$$
STREMATH

APPLIES 1 OF D

Fail
$$M = F_b S$$
 $< M = \frac{wl^2}{8}$

Capacity

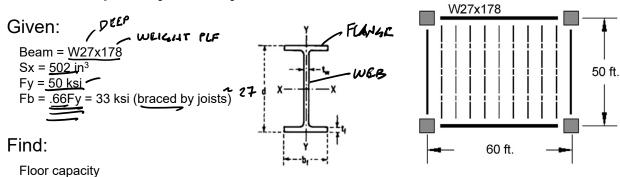
$$M = \frac{M}{8} = M = \frac{W^2}{8}$$
 solve for w


Design
$$M = \frac{wl^2}{8} = M = F(S) \text{ solve for S}$$

University of Michigan, TCAUP Structures I Slide 7 0f 20

Beam Capacity Analysis - procedure

- 1. Determine section properties. (from table)
- 2. Choose safe allowable stress. (depends on bracing)
- 3. Calculate allowable moment capacity.
- 4. Set equal to applied moment and find load.



WIDE FLANGE SHAPES

				Fla	nge		Ĺ	Axis X-	X		Axis Y-Y		
Section Number	Weight per Foot	Area of Section	Depth of Section	Width b _f	Thick- ness	Web Thick- ness t _w	ł _x	S _x	ι×	ly	Sy	Гy	r _T
	lb	in.²	in.	in.	in.	in.	in.4	in.³	in.	in.4	in.³	in.	in.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

Beam Capacity Analysis - example

WIDE FLANGE SHAPES

				Fla	nge			Axis X-X	(Axis Y-Y		
Section Number	Weight per Foot	Area of Section	Depth of Section	Width b _f	Thick- ness	Web Thick- ness t _w	ı,	S _x	ι ^x	ly	Sy	Гy	r _T
	(F)	in.²	in.	in.	in.	in.	in.4	in.³	in.	in.4	in.³	in.	in.
W27 x		52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

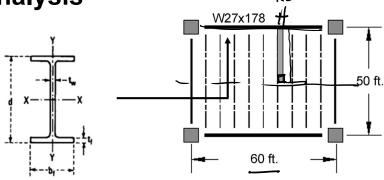
University of Michigan, TCAUP Structures I Slide 9 0f 20

Beam Capacity Analysis

Given:

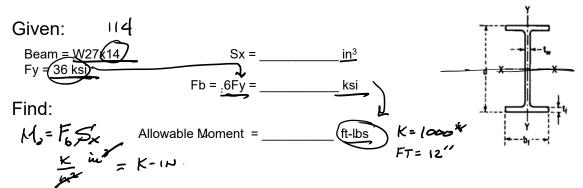
Beam = W27x178

Sx = 502 in3


Fy = 50 ksi

Fb = .66Fy $\frac{4}{3}$ 33 ksi (fully braced)

44×50


Find:

Floor capacity

$$M = \frac{|F_b| S_x}{|S_a|} = \frac{|G_b| S_b S_b S_b}{|S_a|} = \frac{|G_b| S_b S_b S_b}{|S_a|} = \frac{|G_b| S_b}{|S_a|} = \frac{$$

WIDE FLANGE SHAPES

				Fla	nge		Ĺ	Axis X-X	<u>_</u>		Axis Y-Y		
Section Number	Weight per Foot	Area of Section	Depth of Section	Width	Thick- ness	Web Thick- ness	ı,	S _x	r _x	ly	Sy	Гy	rτ
		Α	d	b _f	t _f	t _w							
	lb	in.²	in.	in.	in.	in.	in.4	in.³	in.	in.⁴	in.³	in.	in.
W27 x	178	52.3	27.81	14.085	1.190	0.725	6990	502	11.6	555	78.8	3.26	3.72
	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
W27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

University of Michigan, TCAUP Structures I Slide 11 0f 20

Section Properties

Section Modulus Table

Sorted by Sx for design selection with:

$$S = I/c$$

f_b is actual stress

F_b is allowable stress

- for bracing $< \underline{L}_c$, $F_b = 0.66F_y$
- for bracing $< L_u$, $F_b = 0.6F_y$

F_y is the yield stress

$$M_r = .66 Fy S_x$$

So the design equations is:

$$S_{x} = M_{applied}/F_{b}$$

$$S_{1} \ge \varepsilon$$

	F _v = 50 H				_		F.	p.	S _x	
L _c	L _u	M _R	(S_x)	Shape	Depth d	F' _y	166Fg	ry = (350) (L ₀)	(S) 0 · 67	<u>r</u>
Ft	Ft	Kip-ft	In.3	Опарс	In.	Ksi	Ft	Ft		
10.6	(11212111000100100		_	W 44 400	+	Kai			Kip-ft	
14.1	11.2 15.2	2130 2110	776 769	W 44×198 W 40×199	427/s 385/s	-	12.5	15.5	1540	
11.8	45.7	2110	769	W 21×333		_	16.6	20.0	1520	
14.2	19.8	2080	757	W 21×333 W 33×221	25 33%	_	13.9 16.7	63.4	1520	
13.5	24.0	2050	746	W 30×235	311/4	_	15.9	27.6 33.3	1500	
12.8	29.0	2040	742	W 27×258	29	=	15.1	40.3	1480 1470	
10.9	15.1	1980	719	W 36×210	363/4	_	12.9	20.9	1420	
11.9	34.7	1970	718	W 24×279	263/4	_	14.0	48.2	1420	
	40.7	4000								
12.8	16.7 42.7	1880 1900	708 692	W 40×192 W 21×300	381/4	37.1	17.8 13.7	19.7	1400	
14.1	17.9	1880	684	W 21×300 W 33×201	335/8	_	16.6	59.4 24.9	1370 1350	
17.1	17.5	1000	004	W 55×201	3378	_	10.6	24.9	1350	
10.6	12.3	1880	682	W 40×183	39	_	12.5	17.1	1350	
12.7	26.7	1850	674	W 27×235	285/8	_	15.0	37.0	1330	
10.9	13.9	1830	664	W 36×194	361/2	_	12.8	19.4	1310	
13.5	21.4	1820	663	W 30×211	31	_	15.9	29.7	1310	
11.8	31.4	1770	644	W 24×250	26%	_	13.9	43.7	1280	
11.5	39.2	1740	632	W 21×275	241/8	_	13.6	54.5	1250	
12.6	24.9	1720	624	W 27×217	283/8	_	14.9	34.5	1240	
10.8	49.0	1720	624	W 18×311	22%	_	12.7	68.1	1240	
10.8	13.1	1710	623	W 36×182	36¾	_	12.7	18.2	1230	
10.4	11.0	1650	1599\-	W 40×167	38%	_	12.5	14.5	1190	
13.5	19.4	1640	598	W 30×191	305/8	_	15.9	26.9	1180	
11.7	29.0	1620	588	W 24×229	26	_	13.8	40.3	1160	
10.8	12.2	1600	5801	W 36×170	361/8	_	12.7	17.0	1150	
11.4	35.5	1560	569	W 21×248	233/4	_	13.5	49.3	1130	
10.6	45.0	1550	564	W 18×283	217/8	_	12.6	62.6	1120	
12.6	22.4	1530	556	W 27×194	281/s	_	14.8	31.1	1100	
10.3	13.8	1510	549	W 33×169	33%	_	12.1	19.2	1090	
10.7	11.4	1490	542	W 36×160	36	_	12.7	15.7	1070	
13.4	17.5	1480	539	W 30×173	301/2	_	15.8	24.2	1070	
11.7	26.5	1460	531	W 24×207	253/4	_	13.7	36.7	1050	
10.5	42.2	1410	514	W 18×258	211/2	_	12.4	58.6	1020	
8.5	10.7	1410	512	W 40×149	381/4	_	11.9	12.6	1010	
11.4	32.7	1400	510	W 21×223	23%	_	13.4	45.4	1010	
10.5	11.3	1390	504	W 36×150	351/8	_	12.6	14.6	998	
12.6	20.1	1380	502	W 27×178	273/4	_	14.9	27.9	994	
11.6	24.7	1350	491	W 24×192	251/2	_	13.7	34.3	972	
10.4	12.2	1340	487	W 33×152	331/2	_	12.2	16.9	964	
10.4	38.8	1280	466	W 18×234	21	_	12.3	53.8	923	
11.3	29.8	1270	461	W 21×201	23	_	13.3	41.3	913	
12.6	18.3	1250	455	W 27×161	275/8	_	14.8	25.4	901	
11.5	22.8	1240	450	W 24×176	251/4		13.6	31.7	891	

AMERICAN INSTITUTE OF STEEL CONSTRUCTIO

Beam Design - procedure

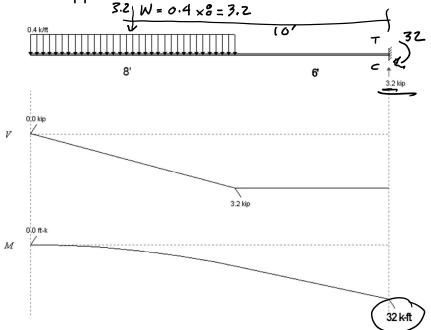
1. Choose a steel grade and allowable stress.

2. Determine the applied moment (e.g. moment diagram)

3. Calculate the section modulus, $S_x \longrightarrow S_x = \frac{M}{F_b}$ 4. Choose a safe section. (from S_x table)

4. Choose a safe section. (from S_x table)

			For s	hapes used	as be	eams			S _x	
	$F_y = 50 \text{ k}$	si			Depth		$F_y = 36 \text{ ksi}$			
Lc	Lu	M _R	S_x	Shape	d	F_y'	L _c	Lu	M _R	
Ft	Ft	Kip-ft	In ³		In	Ksi	Ft	Ft	Kip-ft	
2.9	3.6	47	17.1	W 12×16	12	_	4.1	4.3	34	
5.4	14.4	46	16.7	W 6×25	63/8	_	6.4	20.0	33	
3.6	4.4	45	16.2	W 10×17	101/8	_	4.2	6.1	32	
4.7	7.1	42	15.2	W 8×18	81/8	-	5.5	9.9	30	
2.5	3.6	41	14.9	W 12×14	111%	54.3	3.5	4.2	30	
3.6	3.7	38	13.8	W 10×15	10	-	4.2	5.0	27	
5.4	11.8	37	13.4	W 6×20	61/4	62.1	6.4	16.4	27	
5.3	12.5	36	13.0	M 6×20	-6	_	6.3	17.4	26	
1.9	2.6	33	12.0	M 12×11.8	12	_	2.7	3.0	24	
3.6	5.2	32	11.8	W 8×15	81/8	-	4.2	7.2	23	
2.8	3.6	30	10.9	W 10×12	97/8	47.5	3.9	4.3	22	


Slide 13 0f 20 University of Michigan, TCAUP Structures I

Beam Design - steel example

Using Steel W section:

1. Choose a steel grade: Using $F_y = 50$ ksi $F_b = 0.6 F_y$

2. Determine the applied moment

Beam Design – steel example

Using Steel W section:

 $S_x = \frac{M}{F_b}$

2. Calculate section modulus, S_x

$$\frac{5x}{8} = \frac{12.5}{12.5} = \frac{32 \times 1(12)^{\circ}}{0.6 \times 10^{\circ}}$$

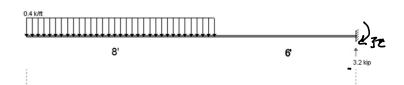
$$\frac{5x}{12.5} = \frac{32 \times 1(12)^{\circ}}{0.6 \times 10^{\circ}}$$

University of Michigan, TCAUP Structures I Slide 15 0f 20

Beam Design - steel example

Using Steel W section:

3. Choose a safe section. (from S_x table)


$$S_x \ge 12.8 \text{ in}^3$$

	ALLO	WABL		ESS DESIOnapes used			TION '	TABLE	S _x
	$F_y = 50 \text{ k}$	(Sİ			Depth			$F_y = 36 \text{ k}$	Si
Lc	Lu	M _R	S_x	Shape	d	F_y'	L _c	Lu	M _R
Ft	Ft	Kip-ft	In ³		In	Ksi	Ft	Ft	Kip-ft
2.9 5.4 3.6 4.7	3.6 14.4 4.4 7.1	47 46 45 42	17.1 16.7 16.2 15.2	W 12×16 W 6×25 W 10×17 W 8×18	63% 101% 81%		4.1 6.4 4.2 5.5	4.3 20.0 6.1 9.9	34 33 32 30
2.5 3.6 5.4 5.3	3.6 3.7 11.8 12.5	41 38 37 36	14.9 · 13.8 · 13.4 · 13.0 •	W 12×14 W 10×15. W 6×20. M 6×20	117/8 10 61/4 6	54.3 — 62.1 —	3.5 4.2 6.4 6.3	5.0 16.4 17.4	30 27 27 26
1.9 3.6 2.8	2.6 5.2 3.6	33 32 30	12.8 11.8 10.9	M 12×11.8 W 8×15 W 10×12	12 81/8 97/8	— — 47.5	2.7 4.2 3.9	3.0 7.2 4.3	24 23 22

Beam Design - Glulam

Using Glulam Timber:

 $F_b = 1250 \text{ psi } (DF \text{ grade L3})$

2100

$$S_x = \frac{M}{F_b}$$

$$S_{X} = \frac{M_{APPLIED}}{F_{D}} = \frac{32000^{\Theta-5}(12)^{"}}{1250^{"}_{PSI}} = \frac{307.2 \text{ in}^{3}}{1250^{"}_{PSI}}$$

Table 5B Reference Design Values for Structural Glued Laminated Softwood Timber

(Members stressed primarily in axial tension or compression) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

						U	se with la	DIE 35 A	ajustinen	t ractors					
				All Load	ling	Ax	ially Load	led		Bending a	about Y-Y	Axis	Bending Ab	out X-X Axis	Fasteners
			Mod	lulus		200 200					Parallel to W			ndicular to Wide	
1		1		of	1	Tension	Compi	ression		Faces of	of Lamination			aminations	4 I
l		l	Elas	ticity		Parallel	Par	allel		Bending		Shear Parallel	Bending	Shear Parallel	
			For	For	1	to Grain	to C	Grain	1.00			to Grain ⁽¹⁾⁽²⁾⁽³⁾		to Grain ⁽³⁾	1
1			Deflection	Stability					330						
1		1	Calculations	Calculations	Compression	2 or More	4 or More	2 or 3	4 or More	3	2		2 Lami-		Specific Gravity
Combination	Species	Grade			Perpendicular	Lami-	Lami-	Lami-	Lami-	Lami-	Lami-		nations to		for
Symbol	<u> </u>	—			to Grain	nations	nations	nations	nations	nations	nations		15 in. Deep ⁽⁴⁾		Fastener Design
.,			E	Emin	F _{c,1}	F _t	F _c	Fc	F _{by}	F_{by}	F _{by}	F _{vy}	F _{bx}	F _{vx}	G
			(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	1
Visually C	araded V	Vestern	Species	3											
1	(DF)	L3	1.5	0.79	560	950	1550	1250	1450	1250	1000	230	1250	265	0.50
2	OF.	ليبا	1.6	0.85	560	1250	1950	1600	1800	1600	1300	230	1000	265	0.50
3	DF	120	1.9	1.00	650	1450	2300	1900	2100	1850	1550	230	2000	265	0.50

University of Michigan, TCAUP Structures I Slide 17 0f 20

1950

2100

Section Properties

1.00

Using Glulam Timber:

L1CL

Glulam Timbers – 8 ¾" wide

 S_x required = 307.2 in³

83/4 × 15"

2000

Table 1C Section Properties of Western Species Structural Glued Laminated Timber (Cont.)

Depth	Area		X-X Axis		Y-Y	Axis
d (in.)	A (in. ²)	$I_x (in.^4)$	$S_{x}(in.^{3})$	r _x (in.)	$I_y(in.^4)$	$S_y(in.^3)$
			8-3/4 th. Width	1 45 4 7 5	$(r_y = 2.$	526 in.)
9	78.75	531.6	118.1	2.598	502.4	114.8
10-1/2	91.88	844.1	160.8	3.031	586.2	134.0
12	105.0	1260	210.0	3.464	669.9	153.1
13-1/2	118.1	1794	265.8	3.897	753.7	172.3
15	131.3	2461	328.1	4.330	837.4	191.4
16-1/2	144.4	3276	397.0	4.763	921.1	210.5
18	157.5	4253	472.5	5.196	1005	229.7
19-1/2	170.6	5407	554.5	5.629	1089	248.8
21	183.8	6753	643.1	6.062	1172	268.0

Section Properties

PROPERTIES OF SAWN LUMBER SECTIONS

Sawn Lumber

Nominal Size b × d	Actual Size b × d	Area in.2	I_x in. ⁴	S_x in. ³
1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
1×6	" \times $5\frac{1}{2}$	4.13	10.40	3.78
1×8	" $\times 7\frac{1}{4}$	5.44	23.82	6.57
1×10	" $\times 9\frac{1}{4}$	6.94	49.47	10.70
1×12	" $\times 11\frac{1}{4}$	8.44	88.99	15.83
1 2 × 4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
2×6	" \times 5½	8.25	20.80	7.56
2×8	" \times $7\frac{1}{4}$	10.88	47.64	13.14
2×10	" $\times 9\frac{1}{4}$	13.88	98.93	21.39
2 × 12	" $\times 11\frac{1}{4}$	16.88	177.98	31.64
3 × 4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
3×6	" \times $5\frac{1}{2}$	13.75	34.66	12.60
3×8	" $\times 7\frac{1}{4}$	18.13	79.39	21.90
3×10	" $\times 9\frac{1}{4}$	23.13	164.89	35.65
3 × 12	" $\times 11\frac{1}{4}$	28.13	296.63	52.73
4 × 4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
4×6	" \times $5\frac{1}{2}$	19.25	48.53	17.65
4×8	" $\times 7\frac{1}{4}$	25.38	111.15	30.66
4×10	" \times 9 $\frac{1}{4}$	32.38	230.84	49.91
4×12	" × 11¼	39.38	415.28	73.83

Structures I Slide 19 0f 20 University of Michigan, TCAUP

Modes of Failure

Strength

- Tension rupture
- Compression crushing

Stability

- Column buckling
- Beam lateral torsional buckling LTB

Serviceability

- Beam <u>deflection</u>
 Building story drift
- cracking

