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Deflection of Structural Members

Slope and Elastic Curve

Deflection Limits

» Diagrams by Parts

+ Symmetrical Loading

* Asymmetrical Loading

Deflection Equations and Superposition
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Deflection

Axial fiber deformation in flexure
results in normal (vertical) deflection.

The change in lengths, top and bottom, T
results in the material straining. For a

w 3 ®

simple span with downward loading, e wy; mﬁ\/’ R
the top is compressed and the bottom \ O
p is comp »fu \

stretched.

The material strains result in
corresponding stresses. By Hooke's
Law, these stresses are proportional to
the strains which are proportional to
the change in length of the radial arcs
of the beam “fibers".
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Slope

* The curved shape of a deflected beam is
called the elastic curve

+ The angle of a tangent to the elastic
curve is called the slope, and is
measured in radians.

» Slope is influenced by the stiffness of
the member:
— material stiffness E, the modulus of
elasticity
— sectional stiffness I, the moment of
inertia,
— as well as the length of the beam, L
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J tangent-.

~ -

elastic curve /

. 180
degrees = radians —
T
Stiffness = El
L

Deflection

» Deflection is the distance that a beam bends
from its original horizontal position, when
subjected to loads.

» The compressive and tensile forces above and
below the neutral axis, result in a shortening
(above n.a.) and lengthening (below n.a.) of the
longitudinal fibers of a simple beam, resulting in
a curvature which deflects from the original
position.
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Axial Stiffness

Stiffness = %
L

Flexural Stiffness

Stiffness = E
L
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Deflection Limits
(serviceability)

» Various guidelines have been
derived, based on usage, to
determine maximum allowable
deflection limits.

» Typically, a floor system with a LL
deflection in excess of L/360 will
feel bouncy or crack plaster.

* Flat roofs require a minimum
slope of ¥4” / ft to avoid ponding.
“Ponding” refers to the retention
of water due solely to deflection of
relatively flat roofs. Progressive
deflection due to progressively
more impounded water can lead
to collapse.
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roof ponding = ;
from IRC, Josh 2014

TABLE 1604.3
DEFLECTION LIMITS>®-e.hi
CONSTRUCTION L Sorw' | D+ L%

Roof members:©

Supporting plaster ceiling 1/360 11360 11240

Supporting nonplaster ceiling 11240 /240 /180

Not supporting ceiling /180 /180 /120
Floor members /360 — /240
Exterior walls and interior
partitions: o o

With brittle finishes ngg

With flexible finishes - =
Farm buildings — — /180
Greenhouses — — /120

International Building Code - 2006
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Relationships of Forces and Deformations

There is a series of relationships involving forces and deformations along a beam, which can be useful in
analysis. Using either the deflection or load as a starting point, the following characteristics can be discovered by
taking successive derivatives or integrals of the beam equations.

A B
W LOAD [ o] ] dy dv 1
o A 8 = =G EITE
- —dx
I\A'\'B\ Ve-Va=wdx
V= [wde SHEAR Y — | hear - Ay _aM 1
T dr® de EI
Ma-Mf:de
M =IL dx  MoMENT M moment = L
dz?  EI
0=""dx SLOPE 9 /’_ d
i 1 =
___JZ[L* slope dx
Bs- 04 = (Mdx)/(El)
y=.f€dx
DEFLECTION y deflection = y
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Slope and Deflection in
Symmetrically Loaded Beams

Maximum slope occurs at the ends of the beam

A point of zero slope occurs at the center line.
This is the point of maximum deflection.

+ Moment is positive for gravity loads.

» Shear and slope have balanced + and - areas.

+ Deflection is negative for gravity loads.
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tangent tangent

L/2 L/2

LOAD

e K

S PR

P/2 P/2

elastic curve

P2 [—
—l P/2

PL/4

SHEAR

MOMENT

x (PL2)/(16EI)

-

SLOPE

(PL2)/(16EI)

DEFLECTION

A = (PL?)/(48El)
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Cantilever Beams

* One end fixed. One end free

* Fixed end has maximum moment, fL
but zero slope and deflection.

* Free end has maximum slope and Vv

deflection, but zero moment.

* Slope is either downward (-) or
upward (+) depending on which
end is fixed. S

» Shear sign also depends of which
end is fixed.

* Moment is always negative for
gravity loads.

+ Deflection is always negative with
maximum at the free end for gravity loads.
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Methods to Calculate Deflection

Integration
can use to derive equations

Diagrams
symmetric load cases

Diagrams (by parts)
asymmetric load cases

Equations
single load cases

T——-)" = -w
9 s 3
V: A=z w ¥
»
f 3
PR A A y
) 1 '
7»»?4

f':;l 4= gsder

Superposition of Equations 5wp4 ,913
multiple load cases A:_g d* 2g4e7 ' dzer
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Deflection by Integration
A
Load PR
wf
Shear .
ga a{x ° g = ‘N’X +‘C
ex-% g =0
..“_La_ aw—P . . E);P
2 O = = + C . C - T2
g‘, “—wxX + =z
Y
Moment Sg o« OQ 4 =‘—z°-‘- . “’2“ +C
e x= o ﬁ =0
o=-0+06+C .. C7O
= o , s
J°" = =3
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Deflection by Integration

Slope

Deflection

EL dv L £
5;1 -— acﬂ t

Cx=0 a=0 (=0

@ x=¥/2 (maxdefl)

g:-wj‘l*w«?q__ qu

z4(e) " iz(s) 24 (?)

g: "Zw]qf % u.;j“’j/&u!q
4& 4% 48

= —-f _"‘Lp_‘(_. - 5‘“'/?4
d° "8 28 7 384
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Deflection by Diagrams
i wf
Load [Azbh | A= 3
ol f Twf
(3 2z
wf ! .
Z )0 '
Shear  ldelE . A: %—
% \}
z _W‘p
wl 0
x 8 3
Moment Z2bh A= wi
o I T 24
A2 w/Z)
4
Slope (El
pe (E) — i A Zw
Az=2 bh 354
wlE
&) x
’P/Z I/Z S ;W/?“

Deflection (EI)
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Table D-24 . Engel

FRACTIONAL

AREAS OF ENCLOSURE RECTANGLES

CURVES TANGENT To
HORIZONTAL AT VERTEX e

NOTE REVFESE P0OS5IBILITIES

k- Vo —He—25 ——)|

X

D)

o

v

FRACTION OF RECTANGULAR
AREAS SHowN —> O

CENTROID OF FRACTIONAL AREA

LOCATED BY WHORIZONTAL

DIMENS (oNS

x§

| %hsb—19%5—)

®

x4

®
x4

&
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Deflection by Diagrams
example 1 10' 10°
20* 0’ 20"
LOADING DIAGRAM = —
BEAM: WIbx 36 ‘\»—____—j.—/

E=30x10%K5.1.

- p— Y —)

&)

X

f—%—

%5

xt

(%)

®

- /s

— %
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SHEAR DIAGRAM

ZO“WHTM 10°

10'

MOMENT DIAGRAM

o}

100 114

“UJJJM“JZOK

il

Il

[l

SLOPE _DIAGRAM

i

500

6L6.7

DEFLECTION DIAGRAM

Structures |

| — ——

L

Y4

X’l

e

Slide 14 of 25




}aJ

w=12"

Deflection by Diagrams
example 2
loAr

E = 29000 ksi
I =400 in* Tis*

V=5 —|

X
— 56— %4
®

Calculated as
a triangle

= K-FT3

| % l(__% MﬂMmmx i 4
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Deflection Quiz

For the beam shown, the downward point load can actually produce an upward deflection on
the cantilever. Sketch each of the diagrams below to show the beam behavior for this case.

Load N

TP/2

Shear

P/2

Moment

Slope

Deflection
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D|ag rams by Pa I’tS O marks vertex which must be present for area equations to be valid.

g = 3 - [
L a S SR & = -k g i, +
. I .
4 b - 512
13" F ok
v | & gyt
() s — =
M V: * F
@5 : D, ot L
, IK-F "ZéKF

O Q 38 K-F
455 rt >
! I o
AEI ! (00197 RAR) (0.0z0% M)
+
}_%‘§I<‘f3 -“4673K-F;
C2.857) (-4.35")
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Methods to Calculate Deflection

Integration & %
can use to derive equations 53 dx o = 4= =
—w T
Diagrams -
symmetric load cases -
Diagrams (by parts) A f P
asymmetric load cases f} l e '2 L +ﬁ— ¥
: 4
Equations W sl
single load cases E".?T—g d 384 EL
Superposition of Equations w J,P 5wp4 e p®
multiple load cases A% d* 2g4e7 ' dzer
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Deflection: by Equations

 Deflection can be determined by the use

Beam Load and Support Actual Deflection”
of equations for specific loading w
. LI LI LT 500}
conditions. S| Y— - i = S
L
(a) Uniform load, simple span (at the centerline)
+ See posted pages for more equations. A v | w
. , _r?
good source is the AISC Steel Manual. %‘ﬁ — B =g
. L
g ” . oncentrated load at midspan (at the centerline)
« By “superposition” equations can be D e
. . P P
added for combination load cases. Care B | w | W W
: N2 N2 A BB e DR
should be taken that added equations all e S— — max T E48El | 28.2El
give deflection at the same point, e.g. L _
. () Two equal concentrated loads at third points (at the centerline)
the center line. ® B 5
U4 | uva |va | ua
. - iy el
* Note that if beam lengths and load (w) & LA 7 ™ 20EI
are entered in feet, a conversion factor of i e s
1728 in¥/ft3 must be applied in order to
compute deflection in inches.
University of Michigan, TCAUP Structures | Slide 19 of 25

Example: Equations Method — By Superposition

» To determine the total deflection of the 2|0k
. . Ly w = 1k/FT.
bea_m for the gl.ven loading co.ndltlo.n, TTTT T
begin by breaking up the loading diagram S
\ 14 V 14’ 4

into parts, one part for each load case.

w = 1000#/FT. + 55#/FT. = 1.06k/FT.
IR EEE

« Compute the total deflection by e B
superposing the deflections from each 28
of the individual loading conditions. In
this example, use the equation for a mid-
span point load and the equation for a
uniform distributed load.

20k

P} 50l
Aactual = +
48E] 384EI
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Example: Equations Method

* For a W18x55 with an
* E modulus of 30000 ksi
* moment of inertia of 890 in*

+ Using an allowable deflection limit of
L / 240.

* Check deflection

P 5L
A = — e ——
actual ™ 48F] * 384EI

20 k(281,728

5(1.06 k/ft.)(28)*1,728

20k
w = Tk/FT.

w = 1000#/FT. + 55#/FT. = 1.06k/FT.
TILIIIIIII]

T —

28

actual =

48(30x10°)(890)
Agctunt = 0.59” + 0.55" = 1.14”

L

A oL _28x12in/ft.
allow =~ 240 -

240

=14"

Am] =1.14"<14"” .. OK

University of Michigan, TCAUP

(384)(30 x 10°)(890)
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Example: Asymmetrical Loading — Superposition of Equations

Standard equations provide values
of shear, moment and deflection at
points along a beam.

Cases can be superposed or
overlaid to obtain combined values
at some point on the beam.

To find the point of combined
maximum deflection, the derivative
of the combined deflection equation
can be solved for 0. This gives the
point with slope = 0 which is a
max/min on the deflection curve.

Steel Construction Manual
AISC 1989
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5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

Ri=Vimax. . . . . . . . . = % (21—a)
wa?
] ]wlal | Rz=Va . . . . . . . . .. =3
Ry Rz v, (when x < a) ..... = Ri—uwx
_*_H ™M max.(at x = —Ru—/‘~ ...... Rz::
\ wx2
LN "'\/ Mx (whenx<a> ..... = Rxx—T
Ry Sh T2
w7 ear Mx (whenx>a) ..... = Rz2 (I—x)
Mba Ax (whan x < a) @ & oG o= 2:’E’(Il(a*(Z!—a)’—Zax’(21—:-1)+lx:‘>
wa2(l—x)
A when x > a G & w = (4x1 —2x2 — a2)
Moment * ( ) = 24EL
8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT
Total Equiv. UniformLoad ., ., . . . = 8 ';:b
P
‘.)H] Ry = Vx(max. when a < b) ..... %
R, Re Ra= v.(max. when a > b) ..... 2
M max.( at point of load ) I PTb
x
v, Pbx
¥ M when x < a T ae and
™ ( ) 1
Shear R (a‘x Y EXCE S TR b) _ Pab (a+2b) Y3a (a+2b)
3 27 ElI
Mma: Aa ( at point of load ) § % & e = P;Etlb:
Pbx
e Ax ( when x < a ) - A GBI
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Example (same equations as above): Asymmetrical Loading — Superposition

ws | KLE J«ZK
L T 1
1 6! g 8-

IBE: |

i ; USING PeeresiTior CAsL § +cdot &
Deflection equations for cases 5 + 8 0 % 5

Aex = Cdse 5+ cAsL &

A= wdz(j,*)@(%(_le_j) Ax (/(Z—loL—'xz>
ZEEy] tpere

/

Input actual dimensions

/

& (A & g 2l CPLY -
Reduce and write deflection equation [FA® L2 Le-m)(4xk-2a®- ") | 208) (36718~ )

. 4 %
in terms of x EA(56) 6(3¢)
X 5
> 2

Differentiate dy/dx to get the slope - x4 1050 x - 444

equation : z TS 15 THL CQosiont |
\ QX’ Kie o 722 x + |loso Fok 5LOYE FoR 124x<18|

A

2

L
G

I\l

WHBAL SLEPR = O, A = My |

Set slope equation =0 > o2 X - Jexit-l0%0
1 12ZF 5
4 == K S A ;
Solve for x x= 144249930 ‘j"’”' ~3p = ST f
This will be the point of Amax Zm E
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Example (same as above): Asymmetrical Loading — Superposition

Deflection equations (5+8) — wa (£-7) (Ank _zrz_at>+ Plx (£342-27)

_ 24 ET £ bEL X
Input beam distances as before and : 5
reduce terms » Bl e X 36x”, 1090x - BLH
b
2
Al ) » 165 _ 3 >6s5) , 105016.5) - 844

Solve deflection for x=16.5’ eiL.5 e

= F42.6 - 980l + 17325 - 824

= ?408 K-Frd
Solve for specific section and material ¢ w 1Zx26 Az Mo (1728)
by dividing by El of the section L= 204 o 29000 204

E-= 27&00 KSt = 7—-[6"

e

University of Michigan, TCAUP Structures | Slide 24 of 25




Estimate: Asymmetrical Loading — Superposition of Equations

Or as an estimate...

It is also possible to estimate the
deflection location and value
without the more exact calculation
of x.

If an equation for A max is given,
use that (conservative).

Otherwise guess x near mid-span.

for example in this case
using C.L. =18 ft

A =7344 k-ft3 =2.15”
0.46 % off

Steel Construction Manual
AISC 1989
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W=

L

| KLE:

e

$&*

5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

wa
Ry=Vygmax. . . . . . . . . = 21 i—a)
2
wa Re=Va . . « « « o . . . . -2
T o e
Ry 4 Rz v, (whan x < a) ..... = Ry —wx
R1 - Ra?
. M max.(at xm—) . . ... 2w
Y‘ """"" ‘v Mx (whmx(a) ..... - R.x——wzﬁ
(.& N Shear
w Myx (whcn x> a) ..... = Rz (I—x)
. ax (whon x < a) e = (@2 a)+u=)
max
a2(l—x)
| Ax whenx>a) . . . . . -X (4x] —2x2 — a2)
Moment ( ) 24E1

8. SIMPLE BEAM—CONCENTRATED LOAD

AT ANY POINT

Total Equiv. UniformLoad . . . . . L] "’:"
P
'-"1 Ry = Vx(max. when a < b) N %
R, Rq Ra= Vx(mu. when a > b) o e e %
M mn.( at point of load ) e e . m @
x
M Pbx
X M whenx<a ) . . . . = ———
T 3v ( ) 7
Shear e “x_‘)a(a+2b) whena>b) = Pab (a +2b) ¥V 3a (a + 2b)
3 27EIL
M -uvw I aa ( at point of load ) P ';‘E'Ibl.
Moment ax ( when x < a ) T SPE!:"I (12— b2 —x3)
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