
Statics and Force Vectors

- Components
- Resultants & Equilibrants
- · Graphic method
- · Analytic method

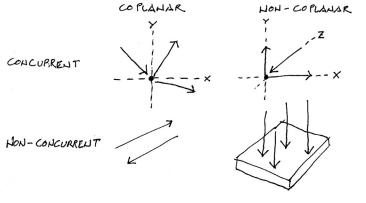
Simon Steven from Weeghconst (1586)

University of Michigan, TCAUP Structures I Slide 1 of 12

Force Definitions

Single vector

- Magnitude
- Direction
- · Point of Application

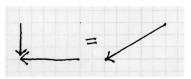

Force Transmissibility

- A force can be resolved at any point along its line of action
- The external affect on a body is unchanged

Force Systems

- Concurrent Coplanar
- · Non-concurrent Coplanar
- Concurrent Non-coplanar
- Non-concurrent Non-coplanar

Force Addition


Inline forces

· By linear addition

Orthogonal forces

• Pythagorean Theorem

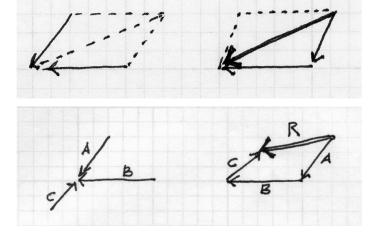
University of Michigan, TCAUP Structures I Slide 3 of 12

Graphic Method

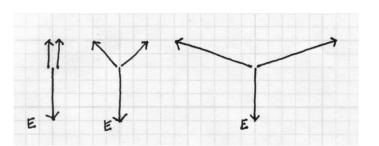
Addition of Two Forces

Force Parallelogram

The diagonal is the vector addition of the two sides



Resultant

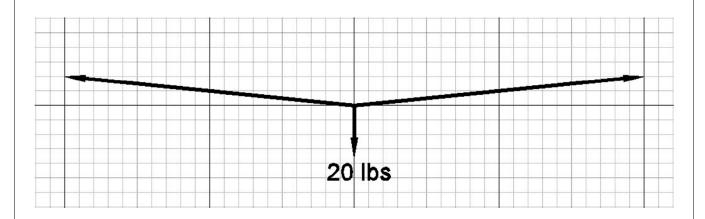

Addition of two or more forces

- Force parallelogram
- · Force polygon

Equilibrant

Opposite and equal to the resultant

University of Michigan, TCAUP

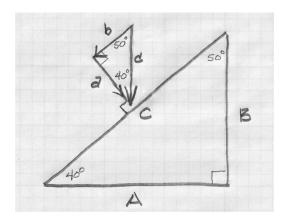

Structures I

Slide 5 of 12

Lecture Quiz 2 - Find the Balancing Forces

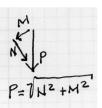
Use the graphic approach to determine the force components in the rope with a suspended load of 20 pounds. The slope of the rope is 1:10.

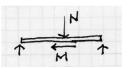
What is the total force in the rope?



Force Components

Orthogonal


- Horizontal
- Vertical

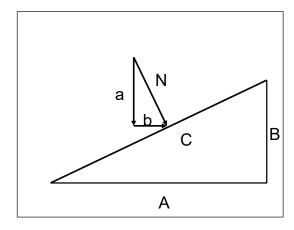

Force Decomposition

$$\frac{C}{c} = \frac{A}{a} = \frac{B}{b}$$

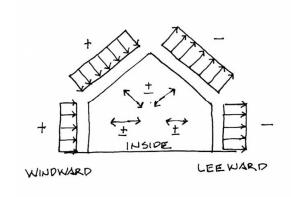
M B A B

University of Michigan, TCAUP

Structures I


Slide 7 of 12

Force Components

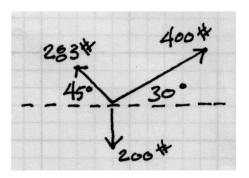

Orthogonal

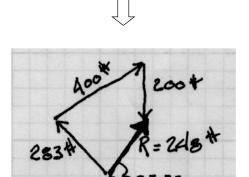
- Horizontal
- Vertical

Decomposition of a Normal Force

$$\frac{C}{N} = \frac{A}{a} = \frac{B}{b}$$

Graphic Method

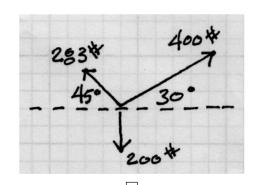

Addition of Multiple Forces

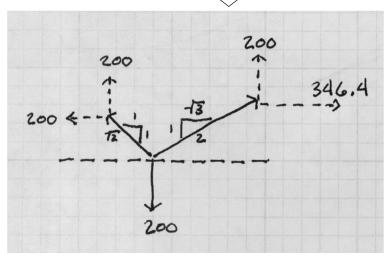

Force Polygon

Forces add "Head to Tail"

The resultant closes the figure "Tail to Head"

University of Michigan, TCAUP Structures I Slide 9 of 12


Analytic Method

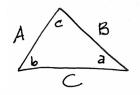

Addition of Multiple Forces

Break each force into orthogonal components

Sum all vertical and sum all horizontal

Find the resultant of the orthogonal resultants

Trig Formulas


Addition of Two Forces

or

Decomposition of One Force

Orthogonal Pythagorean Theorem

Non-orthogonal Law of Sines Law of Cosines

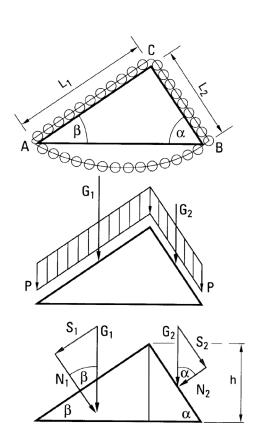
$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

$$C = \sqrt{A^2 + B^2}$$

a= ARCTAN 1/B C=B sinb

University of Michigan, TCAUP

Structures I


Slide 11 of 12

Simon Stevin

Originator of Vector Analysis

The vector analysis of a "perpetual motion machine", from Weeghconst (1586)

- 1. Take G1 and G2 to be the gravitational force on the balls (weight).
- 2. Break these two unequal forces into orthogonal components, normal to and along the side (N and S)
- 3. Because G is normal to the base, the orthogonal component triangles will be similar.
- 4. S₁ and S₂ can be seen to be equal and proportional to the height of the original triangle. If G forces are scaled 1:1 with lengths L, then $S_1=S_2=h$, therefore the forces down each slope are balanced.

$$S_1 = S_2 = h$$