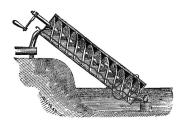
**Equilibrium Equations:** 

Two-Dimensional

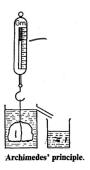
- · Archimedes' Lever
- Newton's First Law
- Loading Types
- End Conditions
- Free Body Diagrams
- End Reactions




University of Michigan, TCAUP Structures I Slide 1 of 13

# Archimedes of Syracuse (287 BC – 212 BC)

Greek mathematician, engineer, inventor

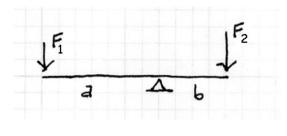

- The Lever (On the Equilibrium of Planes)
- The Screw (water pump)
- Greek Fire (to burn boats)
- Archimedes' Principle (density measure)
- Block and Tackle (for lifting on boats)
- Catapult —
- Odometer —
- Mathematical observations on circles and spheres

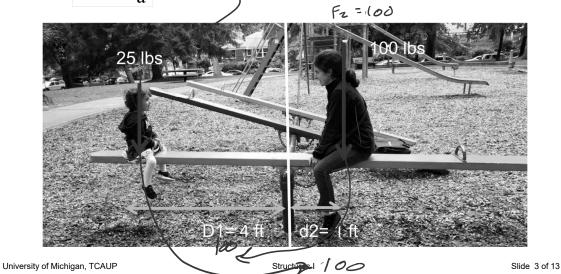






by Domenico-Fetti





### **Archimedes Lever**

Two forces will balance at distances reciprocally proportional to their magnitudes.

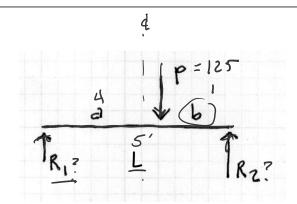
$$\mathbf{F}_{1} \times \mathbf{a} = \mathbf{F}_{2} \times \mathbf{b}$$

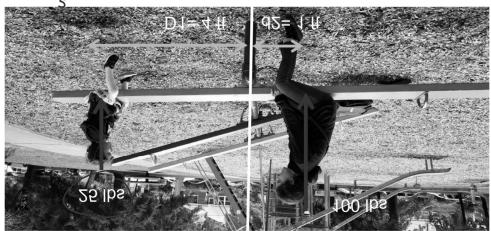
$$\mathbf{F}_{1} = \mathbf{F}_{2} \frac{\mathbf{b}}{\mathbf{a}} \mathbf{f}_{4} = 25$$





## **Archimedes Lever**


Two forces will balance at distances reciprocally proportional to their magnitudes.


Applied to beam end reactions:

$$\underline{\mathbf{R}}_{1} = \mathbf{P} \frac{\mathbf{b}}{\mathbf{L}}$$

$$\underline{\mathbf{R}}_{2} = \mathbf{P} \frac{\mathbf{a}}{\mathbf{L}}$$

$$\underline{\mathbf{R}}_{3} = 125 \frac{1}{5} = 25$$





## **Newton's First Law**

An object at rest will remain at rest unless acted upon by an outside, external net force.

$$\sum \mathbf{F}_{x} = 0 \quad \sum \mathbf{F}_{y} = 0 \quad \sum \mathbf{M} = 0$$

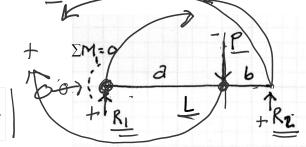


Sir Isaac Newton 1643 - 1726

Horizontal Equilibrium

$$\sum \mathbf{F}_{x} = 0$$

Vertical Equilibrium


$$\sum \mathbf{F}_{y} = 0 = \mathbf{R}_{1} + \mathbf{R}_{2} - \mathbf{P}$$

$$\mathbf{R}_{1} + \mathbf{R}_{2} = \mathbf{P}$$

Rotational Equilibrium

$$\sum \underline{\mathbf{M}_1} = 0 = \underbrace{\mathbf{Pa} - \mathbf{R}_2 \mathbf{L}}$$

 $\mathbf{R}_2 = \frac{\mathbf{Pa}}{\mathbf{L}}$ 



University of Michigan, TCAUP

Structures I


FORCE 100#

Slide 5 of 13

### Quiz

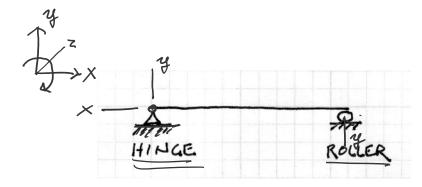
Find the end reactions R1 and R2

$$R, < R_z$$



EQUILIBRANT

# **Support Conditions**


### Roller

Fixed in Fy

### Hinge

Fixed in Fx

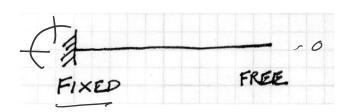
Fixed in Fy



### **Fixed**

Fixed in Fx

Fixed in Fy


Fixed in Mz

#### Free

Free in Fx

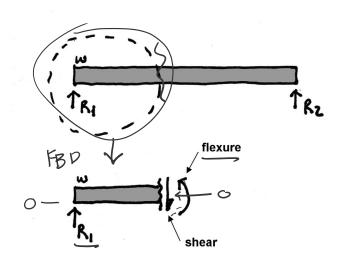
Free in Fy

Free in Mz



University of Michigan, TCAUP

Structures I


Slide 7 of 13

# Free Body Diagrams

A Free Body Diagram (FBD) is a part cut from a larger force system.

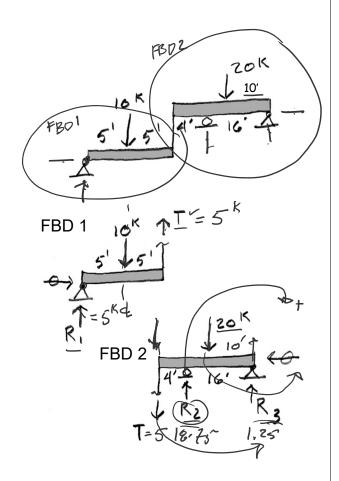
When the FBD is cut free, all "exposed" forces are shown

If the complete system is in static equilibrium, then the FBD with forces at the cut will also be in equilibrium



## Free Body Diagrams

A Free Body Diagram (FBD) can be used as a step in solving the external forces


$$ZF_{v} = R_{3} - 20 + R_{7} = 0$$

$$R_{3} = 1.25$$

$$\sum_{k=3}^{100} (20) - 20(10) + R_2(16)$$

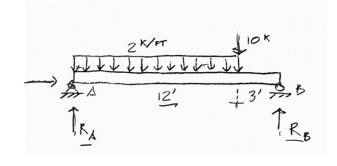
$$= -100 - 200 + R_2(16)$$

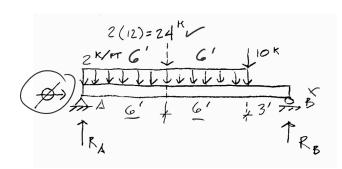
$$R_2 = \frac{300}{16} = 18.75$$



University of Michigan, TCAUP

Structures I

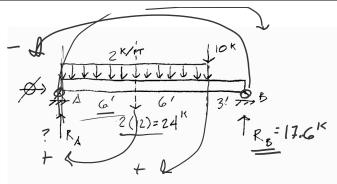

Slide 9 of 13


### **End Reactions**

Example 1

Given: Loads, Supports, Dimensions

- 1. Label components of reactions. Depending on the support condition, include vertical, horizontal and rotational.
- 2. Convert area loads to point loads through the centroid (balance point) of the area.
- 3. Since there is only one horizontal force, it must equal zero.






### **End Reactions**

Example 1

- 4. Use the summation of moments about A to find  $R_B$ .
- 5. Use the summation of moments about B to find  $R_A$ .
- 6. Check calculation by summing vertical forces.



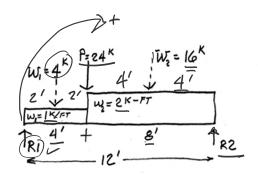
$$\Sigma MeA = 0 = 24(6) + 10(12) - R_8 (15)$$
 $R_8(15) = 264$ 
 $R_8 = 17.6 \times 10$ 

EMeB = 
$$0 = {}^{+}R_{A}(15) - 24(9) - 10(3')$$
 $R_{A}(15) = 246$ 
 $R_{A} = 16.4^{K} + 16.4^{K}$ 

CHECK
 $E = 0 = 17.6 - 24 - 10 + 16.4 = 0$ 

University of Michigan, TCAUP

Structures I

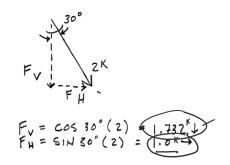

Slide 11 of 13

### **End Reactions**

Example 2

Given: Loads, Supports, Dimensions

- 1. Use the summation of moments about R<sub>2</sub> to find R<sub>1</sub>.
- 2. Use the summation of moments about R<sub>1</sub> to find R<sub>2</sub>.
- 3. Check calculation by summing vertical forces.




$$\Sigma Me_{R2} = Rix(12) - 4(10) - 24(8) - 16(4) = 0$$
 $Ri(12') = 296^{K-FT}$ 
 $R_1 = 24.67^{K}$ 

$$\Sigma MeR_1 = 4^{k}(2') + 24^{k}(4') + 16^{k}(8') - R_2(12') = 0$$
 $R_2(12') = 232^{k-1}$ 
 $R_2 = 19.33^{k}$ 

#### **End Reactions** Example 3

- Label components of reactions. 1. You will need one equation for each unknown reaction.
- Write an equation for the 2. summation of moments.
- 3. Write an equation for the summation of vertical forces.
- 4. Write an equation for the summation of horizontal forces.
- 5. It is good practice to write one additional equation to check the results. In this case summation of moments at C also = 0.



2(10) + 2(26) + 2(30) -(B)(40) = 0 ΣFv = 0 -1.732 -1.732 -1.732 ZFH=0

University of Michigan, TCAUP

Structures I

Slide 13 of 13