Equilibrium of Rigid Bodies

- Equilibrium
- Parallel Force Resultant
- Load Distribution
- External Reactions

Newton's First Law

An object at rest will remain at rest unless acted upon by an outside, external net force.

$$
\sum \mathbf{F}_{x}=0 \quad \sum \mathbf{F}_{y}=0 \quad \sum \mathbf{M}=0
$$

Horizontal Equilibrium

$$
\sum \mathbf{F}_{x}=0
$$

Vertical Equilibrium

$$
\begin{array}{r}
\sum \mathbf{F}_{y}=0=\mathbf{R}_{1}+\mathbf{R}_{2}-\mathbf{P} \\
\mathbf{R}_{1}+\mathbf{R}_{2}=\mathbf{P}
\end{array}
$$

Rotational Equilibrium

$$
\sum \mathbf{M}_{1}=0=\mathbf{P a}-\mathbf{R}_{2} \mathbf{L} \quad \mathbf{R}_{2}=\frac{\mathbf{P a}}{\mathbf{L}}
$$

Parallel Force Resultant

The resultant is a single force that has the same effect as a group of forces.

$$
\begin{gathered}
\sum(\mathbf{F} \times d)=\mathbf{R} \times \bar{d} \\
\mathbf{R}=\sum \mathbf{F} \\
\bar{d}=\frac{\sum(\mathbf{F} \times d)}{\sum \mathbf{F}}
\end{gathered}
$$

Parallel Force Resultant

The resultant is a single force that has the same effect as a group of forces.

Since the resultant is equivalent to the group of forces, it can be used in place of the group.

$$
\begin{gathered}
\sum(\mathbf{F} \times d)=\mathbf{R} \times \bar{d} \\
\mathbf{R}=\sum \mathbf{F} \\
\bar{d}=\frac{\sum(\mathbf{F} \times d)}{\sum \mathbf{F}}
\end{gathered}
$$

Center of Area (centroid)

In determining external reactions, the total load can be represented as a single (resultant) load at the center of gravity. In 2 dimensions this is the
 center of area or the centroid.

Centroids:
rectangles $=$ midpoint

triangles $=1 / 3$ point
symmetric $=$ center

Load Distribution through the Centroid

Self Load

Through center of gravity

Uniform Load

Constant over length
examples: beam selfweight rectangular floor system

Uniformly Varying Load

Linear change over length examples:
snow drifts
fluid pressure
triangular floor areas

Equilibrium of Forces

Example 1: Beam End Reactions

1. Label components of reactions. Depending on the support condition, include vertical, horizontal and rotational.

2. Convert area loads to point loads through the centroid of the area.
3. Since there is only one horizontal force, it must equal zero.

Equilibrium of Forces

Example: Beam End Reactions

4. Use the summation of moments about A to find R_{B}.
5. Use the summation of moments about B to find R_{A}.
$\sum M E A=0$
$=60(4)+20(12)+36(20)-R_{B}(24)$
$R_{B}(24)=1200$
$R_{B}=50 \uparrow$

$$
\left.\begin{array}{rl}
\Sigma H_{C} B & =0 \\
& =R_{A}(24)-60(20)-20(12)-36(4) \\
R_{A}(24)=1584 \\
R_{A}=66 \uparrow
\end{array}\right\}
$$

Ridged Body Supports

Example 2

1. Label components of reactions. Depending on the support condition, include vertical, horizontal and rotational.
2. Convert all point loads into x and y components.

$$
\begin{aligned}
& F_{H}=\sin 30(12)=6^{\mathrm{K}} \\
& \text { OR } \\
& \frac{6^{\prime}}{12^{\prime}}: \frac{F_{H}}{12^{K}} \quad F_{H}=6^{\mathrm{K}} \\
& F_{\mathrm{V}}=\sqrt{12^{2}-6^{2}}=10.39^{\mathrm{K}}
\end{aligned}
$$

Ridged Body Supports

Example 2
3. Since there is only one unknown vertical force (V), find that first.
4. Use the summation of moments about B to find T.

$$
\begin{aligned}
& \Sigma F_{V}==-10.39^{k}-10^{k}-10^{k}+V \\
& V=30.39^{k}+ \\
& \Sigma M_{C B}==\vec{T}\left(26^{\prime}\right)-6^{k}\left(23^{\prime}\right)-10.39^{k}\left(11.195^{\prime}\right)+10^{k}\left(0^{\prime}\right) \\
& T\left(26^{\prime}\right)=138^{k-1}+116.3^{k-1}-80^{k-1}=174.3^{k-1} \\
& T=6.70^{k} \rightarrow
\end{aligned}
$$

Ridged Body Supports

Example 2

5. Use the summation of moments about C to find H .

6. Finally check calculations by summing horizontal forces. They should balance out to zero.

$$
\begin{gathered}
\sum \text { AeC }=0=6^{k}\left(3^{\prime}\right)-10.39^{k}\left(11.195^{\prime}\right)+10^{k}\left(0^{\prime}\right)+\overleftarrow{H}\left(26^{\prime}\right) \\
H\left(26^{\prime}\right)=-18^{k-1}+116.3^{k-1}-80^{k-1}=18.3^{k-1} \\
H=0.70^{k} \leftarrow
\end{gathered}
$$

citcck

$$
\sum F_{i t}=+6.7^{k}-6^{k}-0.7^{k}=0
$$

Cantilever Frame

Example 3

Find the reactions of the cable supported frame.

Hint: $\mathrm{V}_{1} / \mathrm{H}_{1}=\operatorname{Tan} 30^{\circ}$

Cantilever Frame

Example 3

Find the reactions of the cable supported frame.

$$
\begin{aligned}
& \sum M_{R_{2}}=0=-H_{1}(15)+10(10)+10(18)+10(26) \\
& H_{1}=540 / 15=36^{k} \leftarrow \\
& \tan 30^{\circ}=0.57735=V_{1} / H_{1}=V_{1} / 36 \\
& V_{1}=20.78^{k} \uparrow \\
& \Sigma F_{V}=0=V_{2}+20.78-10-10-10 \\
& V_{2}=9.22^{k} \uparrow \\
& \Sigma F_{1 t}=0=H_{2}-36 \\
& H_{2}=36^{k} \rightarrow
\end{aligned}
$$

Other Examples

