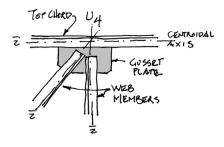
Architecture 314
Structures I

Plane Trusses Method of Joints

Definition and Assumptions
Nomenclature
Stability and Determinacy
Analysis by joints

Phaeodaria – Ernst Haeckel

Structures I University of Michigan, Taubman College Slide 1 of 19


Definitions and Assumtions of Truss Systems

2 Force Members Pinned Joints

Concurrent Member Centroids at Joints

Joint Loaded Straight Members

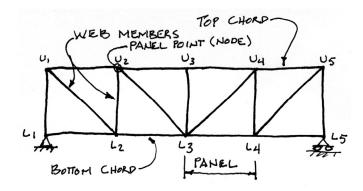
Small Deflections

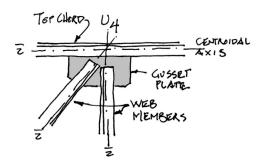
Bullring Covering, Xàtiva, Spain Kawaguchi and Engineers, 2007

Nomenclature

Panels

· Segments: left to right


Joints

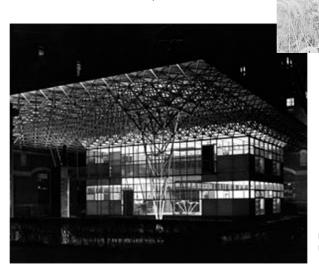

• Upper: U1, U2, U3...

• Lower: L1, L2, L3...

Members

- Chords
- Web

Structures I University of Michigan, Taubman College Slide 3 of 19


Trussed Force Systems

2D Trusses

· Concurrent Coplanar

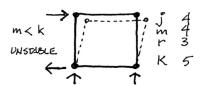
3D Trusses

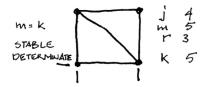
· Concurrent Non-Coplanar

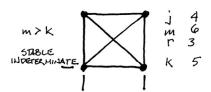
Foster Bridge, 1889 Ann Arbor, Michigan

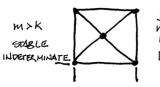
University of Michigan Architectural Research Lab Unistrut System, Charles W. Attwood

Stability and Determinacy of 2D Trusses


For:


- j joints
- · m members
- · r reactions (restraints)


$$k = 2j - r$$


Three conditions

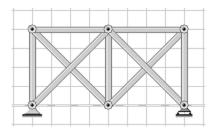
- m < k unstable
- m = k stable and determinate
- m > k stable and indeterminate

JMT K

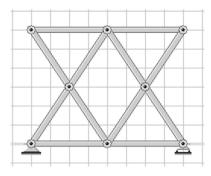
Structures I

University of Michigan, Taubman College

Slide 5 of 19


Quiz

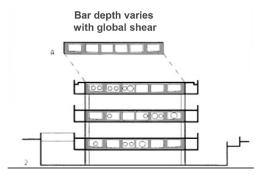
For each of the following trusses, determine whether they are:


- A) Stable
- B) Unstable

$$k = 2j - r$$

- m < k unstable
- m = k stable and determinate
- m > k stable and indeterminate

Truss 1



Truss 2

Vierendeel "Truss"

Not a true truss

Moment frame structure Rigid joints as moment connections Flexure in members

Salk Institute, La Jolla. Architect: Louis Kahn

Engineer: Komendant and Dubin

Vierendeel bridge at Grammene, Belgium Photo by Karel Roose

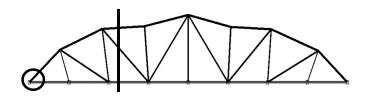
Structures I

University of Michigan, Taubman College

Slide 7 of 19

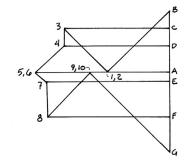
Truss Analysis

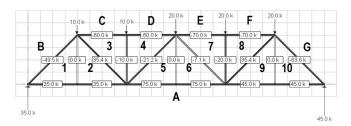
Method of Joints

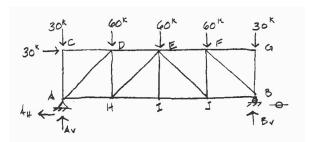

Method of Sections

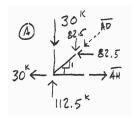
Graphic Methods

James Clerk Maxwell 1869 M. Williot 1877 Otto Mohr 1887 Heinrich Müller-Breslau 1904 William Baker, SOM


Computer Programs


Dr. Frame (2D) STAAD Pro (2D or 3D) West Point Bridge Designer


James Clerk Maxwell

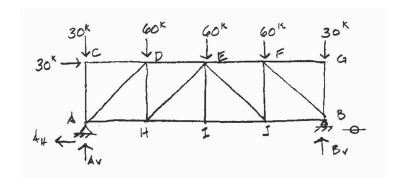

Method of Joints - procedure

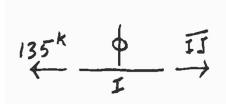
- 1. Solve reactions (all external forces)
- 2. Inspect for zero force members (T's & L's)
- 3. Cut FBD of one joint
- 4. Show forces as orthogonal components
- 5. Solve with ΣF_H and ΣF_V (no ΣM)
- 6. Find resultant member forces (Pythagorean Formula)

© 30^k → 50^k ← 50

↑ 45

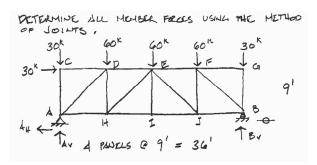
Structures I


University of Michigan, Taubman College


Slide 9 of 19

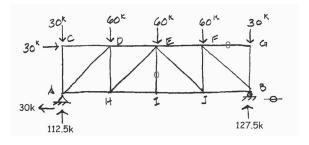
Inspection of Zero Force Members

T-joints


L – joints

 $\begin{array}{c}
G & \overline{F4} \\
 & \downarrow \\
 & \uparrow \\
 & \uparrow \\
 & \downarrow \\
 & \uparrow \\
 & \downarrow \\
 & \uparrow \\
 & \downarrow \\
 & \downarrow \\
 & \uparrow \\
 & \downarrow \\
 &$

1. Solve the external reactions for the whole truss.

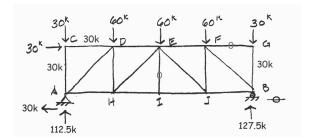


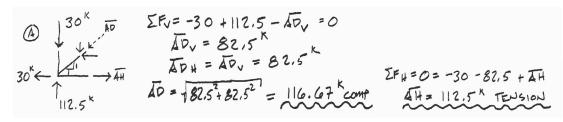
PRACTIONS: $\Sigma F_{H} = 0 = 30 - A_{H}$ $A_{H} = 30^{k} \leftarrow$ $\Sigma HeA = 0 = 30(9) + 60(9) + 60(12) + 60(27) + 30(36) - B_{V}(36)$ $B_{V}(36) = 4590$ $B_{V} = 127.5 \times 1$ $\Sigma F_{V} = 0 = A_{V} + 127.5 - 2(30) - 3(40) = 0$ $A_{V} = 112.5 \times 1$

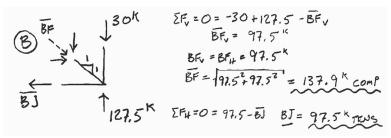
Structures I University of Michigan, Taubman College Slide 11 of 19

Method of Joints - example

- 2. T or L joints by inspection.
- 3. Cut FBD of joint
- 4. Show orthogonal components
- 5. Solve by ΣF horz. and vert.

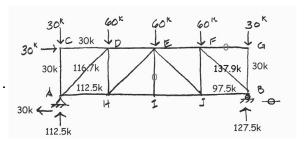



G)
$$\overrightarrow{F4}$$
 \longrightarrow \downarrow 30^{k} $\Sigma F_{H} = 0 = F4 (ZEF0)$


$$\Sigma F_{V} = 0 = -30^{k} + 84$$

$$\uparrow \cancel{B4} = \cancel{30^{k}} \cancel{COMP}$$

Continue with joints having only one unknown in either horizontal or vertical direction. Generally work starting at the reactions.


Structures I

University of Michigan, Taubman College

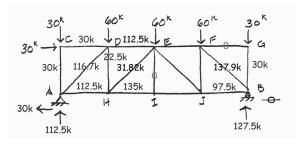
Slide 13 of 1

Method of Joints - example

Continue moving across the truss, joint by joint. Solve by ΣF_H and ΣF_V .

$$\sum F_{V} = 0 = 22.5 - EHV$$

$$EH_{V} = 22.5$$


$$EH_{V} = EH_{W} = 22.5$$

$$EH_{V} = EH_{W} = 22.5$$

$$EH_{V} = -112.5 - 22.5 + HI$$

$$HI = 135 \text{ TENS 10N}$$

Continue moving across the truss, joint by joint. Choose joints that have only one unknown in each direction, horizontal or vertical.

$$\begin{array}{c|c}
135^{k} & \downarrow & \downarrow \\
\hline
I & \downarrow & \downarrow \\
\hline$$

$$\Sigma F_{H} = -135 + 97.5 + \overline{EJ}_{H}$$

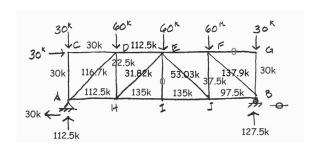
$$\overline{EJ}_{H} = 37.5^{k}$$

$$\overline{EJ}_{V} = 37.5^{2} + 37.5^{2} = 53.03^{k} \text{ comp}$$

$$\Sigma F_{V} = 0 = \overline{FJ} - 37.5 = 0$$

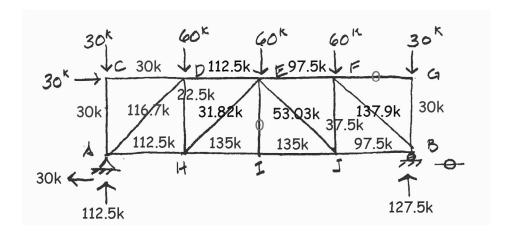
$$\overline{FJ} = 37.5^{k} \text{ TENSION}$$

Structures I


University of Michigan, Taubman College

Slide 15 of 19

Method of Joints - example


Solve the joints with the most members last.

Check that all forces balance.

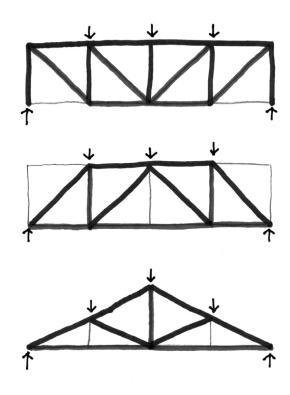
Structures I

Inspect the final solution to see that it seems to make sense.

Structures I University of Michigan, Taubman College

Qualitative T or C

For typical gravity loading:

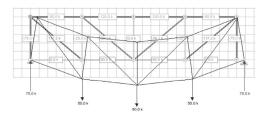

(tension=red compression=blue)

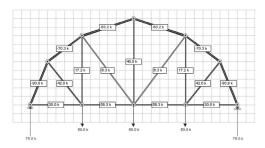
Top chords are in compression

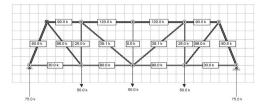
Bottom chords are in tension

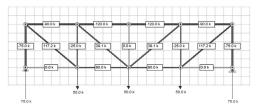
Diagonals down toward center are in tension (usually)

Diagonals up toward center are in compression (usually)


Slide 17 of 19


Qualitative Force


For spanning trusses with uniform loading: (tension=blue compression=red)


Top and bottom chords greatest at center when flat (at maximum curvature or moment)

Diagonals greatest at ends (near reactions, i.e. greatest shear)

Structures I University of Michigan, Taubman College Slide 19 of 19