Architecture 314
Structures I

Plane Trusses Method of Joints

Definition and Assumptions
Nomenclature
Stability and Determinacy
Analysis by joints

Phaeodaria – Ernst Haeckel

Structures I University of Michigan, Taubman College

Definitions and Assumtions of Truss Systems

2 Force Members

Pinned Joints <

Concurrent Member Centroids at Joints

Joint Loaded <

Straight Members ~

Small Deflections

Bullring Covering, Xàtiva, Spain Kawaguchi and Engineers, 2007 Slide 1 of 19

Nomenclature

Panels

· Segments: left to right

Joints

• Upper: U1, U2, U3...

• Lower: L1, L2, L3...

Members

- Chords
- Web

Structures I University of Michigan, Taubman College Slide 3 of 19

Trussed Force Systems

2D Trusses

Concurrent Coplanar

3D Trusses

· Concurrent Non-Coplanar

Foster Bridge, 1889 Ann Arbor, Michigan

University of Michigan Architectural Research Lab Unistrut System, Charles W. Attwood

Stability and Determinacy of 2D Trusses

For:

- j joints
- · m members
- r reactions (restraints)

$$\widehat{(k)} = 2j - r$$

Three conditions

- m < k unstable
- m = k stable and determinate
 m > k stable and indeterminate

Structures I

University of Michigan, Taubman College

Slide 5 of 19

Quiz

For each of the following trusses, determine whether they are:

- A) Stable
- B) Unstable

$$k = 2j - r$$

12 13

- m < k unstable
- m = k stable and determinate
- m > k stable and indeterminate

$$2(8) - 3 = 13$$

m = 12

Vierendeel "Truss"

Not a true truss

Moment frame structure Rigid joints as moment connections Flexure in members

Salk Institute, La Jolla. Architect: Louis Kahn

Engineer: Komendant and Dubin

Vierendeel bridge at Grammene, Belgium Photo by Karel Roose

Structures I University of Michigan, Taubman College Slide 7 of 19

Truss Analysis

Method of Joints

Method of Sections

Graphic Methods

James Clerk Maxwell 1869 M. Williot 1877 Otto Mohr 1887 Heinrich Müller-Breslau 1904 William Baker, SOM

Computer Programs

Dr. Frame (2D) STAAD Pro (2D or 3D)
West Point Bridge Designer

James Clerk Maxwell

Method of Joints - procedure

- 1. Solve reactions (all external forces)
- 2. Inspect for zero force members (T's & L's)
- 3. Cut FBD of one joint
- LL
- 4. Show forces as orthogonal components
- 5. Solve with $\Sigma {\rm F_H}$ and $\Sigma {\rm F_V}$ (no $\Sigma {\rm M})$
- 6. Find <u>resultant member</u> forces (Pythagorean Formula)

Structures I

University of Michigan, Taubman College

Slide 9 of 19

Inspection of Zero Force Members

T - jointsL - joints

$$\begin{array}{c|c} 135^{k} & \phi & \overline{1}\overline{1} \\ \hline & & & \\ \hline & & \\ \hline \end{array}$$

$$\begin{array}{c}
\overline{4} & \overline{4} & \overline{4} & \overline{4} & \overline{4} \\
\uparrow & \overline{4} & \overline{4} & \overline{4} & \overline{4} & \overline{4} & \overline{4} \\
\uparrow & \overline{4} \\
\hline
\end{array}$$

1. Solve the external reactions for the whole truss.

PREACTIONS: $\Sigma F_{H} = 0 = 30 - A_{H}$ $A_{H} = 30^{k} \leftarrow$ $\Sigma HeA = 0 = 30(9) + 60(9) + 60(12) + 60(27)$ $+30(36) - B_{V}(36)$ $B_{V}(36) = 4590$ $B_{V} = 127.5 \times 1$ $\Sigma F_{V} = 0 = A_{V} + 127.5 - 2(30) - 3(60) = 0$ $A_{V} = 112.5 \times 1$

Structures I University of Michigan, Taubman College Slide 11 of 19

Method of Joints - example

- 2. T or L joints by inspection.
- 3. Cut FBD of joint
- 4. Show orthogonal components
- 5. Solve by ΣF horz. and vert.

G
$$\overrightarrow{F_4}$$
 0 $\Sigma F_H = 0 = F_4 (ZEFO)$

C $\Sigma F_V = 0 = -30^K + B4$
 $\overrightarrow{B_4}$ $\overrightarrow{B_4} = 30^K COMP$

Structures I

Continue with joints having only one unknown in either horizontal or vertical direction. Generally work starting at the reactions.

Structures I

University of Michigan, Taubman College

Slide 13 of 1

Method of Joints - example

Continue moving across the truss, joint by joint. Solve by ΣF_H and ΣF_V .

$$\Sigma F_{V} = 0 = 22.5 - EHV$$
 $EH_{V} = 22.5$
 $EH_{V} = EH_{H} = 22.5$
 $EH_{V} = EH_{H} = 22.5$
 $EH_{V} = 12.5^{2} + 22.5^{2} = 31.82$
 $EH_{V} = 13.5 \times 10.5$
 $EH_{V} = 13.5 \times 10.5$

Continue moving across the truss, joint by joint. Choose joints that have only one unknown in each direction, horizontal or vertical.

$$\begin{array}{c|c}
\hline
135^{k} & \downarrow & \downarrow \\
\hline
I & \downarrow & \downarrow \\$$

$$\Sigma F_{H} = -135 + 97.5 + \overline{EI}_{H}$$

$$\overline{EI}_{H} = \frac{37.5^{k}}{37.5^{k}} = \frac{37.5^{k}}{37.5^{2} + 37.5^{2}} = 53.03^{k} \text{ comp}$$

$$\Sigma F_{V} = 0 = \overline{FI}_{J} - 37.5 = 0$$

$$\overline{FI}_{J} = 37.5^{k} \text{ TEMS(on)}$$

Structures I

University of Michigan, Taubman College

Slide 15 of 19

Method of Joints - example

Solve the joints with the most members last.

Check that all forces balance.

Structures I

Inspect the final solution to see that it seems to make sense.

Structures I

University of Michigan, Taubman College

Slide 17 of 19

Qualitative T or C

For typical gravity loading:

(tension=red compression=blue)

Top chords are in compression

Bottom chords are in tension

Diagonals down toward center are in tension (usually)

Diagonals up toward center are in compression (usually)

Qualitative Force

For spanning trusses with uniform loading: (tension=blue compression=red)

Top and bottom chords greatest at center when flat (at maximum curvature or moment)

Diagonals greatest at ends (near reactions, i.e. greatest shear)

Slide 19 of 19

Structures I University of Michigan, Taubman College